

Presentation abstract

- *knowledge sharing* is supported by a concept space structure, which can be individually or collaborativelly built and refined.
- the proposed system uses a 3D interactive visualisation interface to support user exploration and enhancement of the concept space.
- the concept space is somewhat a 3D semantic map, allowing users to define concepts by listing associated keywords.

Motivation

- different representations can enhance the understanding level of a particular problem [Tufte].
- the form of representation makes a dramatic difference in the ease of the task [Norman].
- Norman proposes that external representations, that can be part of a workspace shared with others, require some sort of constructed device to support them: an artefact.
- the system proposes an interface that tries to remove the computer as an object of perception, allowing the user to interact directly with the generated environment as discussed by [Hubbold et al].

Semantic Maps

- strategy for graphically representing concepts, portraying the schematic relations that compose a concept
- assumes that there are multiple relations between a concept and the knowledge that is associated with the concept
- for any concept there are at least these types of associations:
 - class: the order of things the concept falls into;
 - property: the attributes that define the concept;
 - example: exemplars of the concept.

Semantic Maps

- a general procedure to develop a Semantic Map is by having a group discussion where the three types of concept associations emerge.
- its major purpose is to allow students organise their prior knowledge into formal relations and thus provide a basis for understanding what they are about to read and study.
- comprehension can be thought of as the elaboration and refinement of prior knowledge.
- provide a graphic structure of knowledge to be used as the basis for organising new ideas as they are understood.

Computer	Interface
Order, 0.67	order, 0.34
Fechnology, 0.7	operation, 0.76
Automatic, 0.67	human, 0.8
Processing, 0.8	computer, 0.56
ructure, 0.7	

Concluding remarks

- evaluation is being conducted by groups of people sharing their concepts and keywords about a given domain providing information on three main topics:
 - how experts can built a common knowledge structure;
 - how each user will be able to take advantage of both concept and criteria visualisations;
 - how can a group of users enhance and share a given knowledge structure.
- in ill-structured or complex domains, the visualisation offers the possibility of discovering relations between given concepts, defining an information context.

Concluding remarks

- the proposed 3D interactive visualisation provides the means for integration between the services needed to allow collaboration for enhancing the structure, and allows for group interaction.
- provides a visual interface for semantic access to information as an independent layer regarding a data source.
- the criteria space visualisation allow users' exploration of the shared concept space by rearranging its concepts based on given criteria.