Evaluation of a Visualisation Design for Knowledge Sharing and Information Discovery

ICEIS 2001 Conference, 7-10 July

Luís Manuel Borges Gouveia lmbg@ufp.pt Feliz Ribeiro Gouveia fribeiro@ufp.pt

Centro de Recursos Multimediáticos Universidade Fernando Pessoa Porto - Portugal

Presentation abstract

- present a tool using a 3D interactive visualisation system that allows knowledge sharing and information discovery
- propose a visualisation design using direct manipulation techniques to convey information about a structure for knowledge sharing
- the structure describes a knowledge theme described as a set of concepts provinding a particular context description about the knowledge being shared
- the application was tested using the set of concepts to direct searches in the World Wide Web

Presentation abstract

- preliminary evaluation results are reported: showing that the system tends to better support people with some *knowledge expertise* about the knowledge being shared even if they have little *Web expertise*
 - this show potential for the visualisation design as an interface for both knowledge sharing and information discovery
 - for people that have already some theme *knowledge expertise*, but suffer from information overload or lack
 of knowledge about the structure of large information
 spaces such the Web

Way two: ubiquitous computing

"Two way" integration: visualisation

- <u>definition</u>: use of images and animations to convey information
- goal :effectively convey information to the user
 - transforms the abstract and symbolic into the geometric
 - harnesses the human perception system (visual?)

Visualisation (why?)

- 3D visualisation can offer a more convenient and natural way for people to interact with information spaces (as distinct from environments that are naturally 3D) [Tufte, 1990] and [Benedikt, 1992].
- to date there is not much evidence to support it, other than in cases where the information has a natural spatial component [Hubbold et al., 1995]
- many problems as user sense of position that can be lost if the layout changes [Ingram and Benford, 1995]

Visualisation (task approach)

- an application for testing the visualisation design:
 - information discovery: support user efforts to find relevant information within a given knowledge domain [Li-Jen and Gaines, 1998]
 - setting up a context, a query generation tool and an Information Visualisation [Card et al., 1999];
 providing context and information about a particular data source for analysis and comparison.
- based on a given context shared as a 3D interactive visualisation, users can be assisted to retrieve information and analyse it information discovery [Baeza-Yates and Ribeiro-Neto, 1990]

The evaluated prototype

The prototype implements:

- a concept space as a 3D interactive visualisation;
- a visualisation design composed by two distinct visualisations: a *concept space*, representing the structure, and a *criteria space* that allows spatial positioning by specifying up to three criteria;
- data source integration by using an *Information Visualisation* within the criteria space visualisation;
- displaying of results using a *search engine* (the *AltaVista Search Personal eXtension 97*).

Goals

- prototype (3D interactive visualisation) goals:
 - convey information about a structure for knowledge sharing
 - test how this could support knowledge sharing by proposing a particular system to give support to users in information discovery
 - help users to build their own queries by using a textual search engine based on information from the structure for knowledge sharing
 - allows the visualisation of data source information within the visualisation design and displaying of results using an HTML browser

Goals and rationale

- tool advantages are greater when data sources do not have an underlying structure and a query returns a vast amount of results as is the case of the Web
 - information overload occurs...
- tool based on a shared interactive representation of a knowledge theme that can be used to construct queries and compare a data source with the domain representation
 - allow user individual application of shared context
- a basic *support for collaboration* is implemented within the system to share the knowledge domain representation and to enhance it

A partial concept space structure example

Computer	Interface
Order, 0.67	order, 0.34
Technology, 0.7	operation, 0.76
Automatic, 0.67	human, 0.8
Processing, 0.8	computer, 0.56
Structure, 0.7	

Evaluation

- selected 11 undergraduate students from UFP
 - the subjects were volunteers and no payment has been made for their participation
 - the knowledge domain was *Information Management*
 - the subjects were asked to use the prototype in six activities covering the following issues:
 - use the concept space;
 - use the criteria space;
 - analyse one concept relations;
 - create a criteria space;
 - perform a concept search;
 - perform a keyword search;

Evaluation script

- one-hour and half composed of the following activities:
 - a pre-experiment questionnaire (5 minutes);
 - a general overview of the tool functionality (10 minutes demo) giving by the evaluator;
 - a lab training period (10 minutes);
 - break (5 minutes);
 - continuous session for performing the proposed six activities (50 minutes);
 - a post-experiment questionnaire (10 minutes)

Evaluation factors

- asking each student:
 - what they have *learned* (as measured by a multiple-choice questionnaire);
 - how they think the system *helped* them (like/dislike rating);
 - what is their *opinion* about using the system (like/dislike rating);
- taking the *time to complete* of the six activities;
- performance is examined taking into account students own rating as low or high in:
 - Web expertise
 - Knowledge domain expertise (*Information Management*)

Data analysis

- about the *learn* variable (test questionnaire):
 - web expertise has significance at a 5% level;
 - knowledge expertise has significance at a 1% level;
 - both web and knowledge expertise are significant but with subject being more significance.
 No important interaction between both variables has been reported.

Data analysis

- about the *relation* between *web* and *knowledge* experience:
 - in the presence of *knowledge* expertise, the web expertise is no more significant at a 5% level;
 - in the presence of *web* expertise, the subject expertise is approximately significant at a 5% level.
- about the *help* variable (low/high help for the users):
 - there is no evidence of meaningful effects with *web* and *knowledge* expertise;
 - with both web and knowledge expertise together there is also no effects.

Data analysis

- about the *opinion* variable (low/high help for users):
 - web expertise is not significant;
 - *knowledge* expertise is approximately significant at a 10% level;
 - with both web and knowledge expertise there are no effects.
- about the *time to complete* variable (taking into account subjects that complete all tasks):
 - web expertise is significant at 1% level;
 - knowledge expertise is significant at 5% level;
 - both *web* and *knowledge* expertise do not have any relation

Concluding remarks

- people *learn* more when they had already some *expertise* in the knowledge area
- the importance of using the *web* before was moderate although not so important as the *knowledge* expertise to explain questionnaire results (*learn*)
- the users feeling about how the system *helps* them has not any impact from their *web* or *knowledge* expertise
- when considering user *opinion* about the system, *knowledge* expertise seems to have some importance, regardless of the *web* expertise

Concluding remarks

- operation of the system seems to be influenced by the users *web* expertise in a very important way
 - knowledge expertise also assists users in system operation
- overall, the system tends to better support people with some *knowledge* expertise and little *web* expertise
 - seems to show some potential as an interface to access information for people that have already some knowledge expertise - more evaluation needed!

Concluding remarks

- use of visualisation techniques can improve the interface by supporting familiar cues to user perception and thus convey information for knowledge sharing
- people were able to use the visualisation design