Capítulo III

INTEGRAIS DE LINHA

Capítulo III

fechada, isto é: qualquer percurso de num conjunto finito

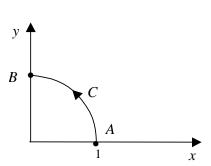
e *B* coincidem, *C* é denominada de *curva* . Assume-se neste capítulo que integração de um integral de linha, consiste de muitas curvas simples.

Definição e Estudo dos Integrais de Linha.

Um integral de linha de uma função vectorial $\mathbf{F}(\mathbf{r})$ sobre uma curva C é definida por $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt$. Em termos de componentes, com $d\mathbf{r} = [dx, dy, dz]$ e $' = d/dt \quad \text{teremos} \quad \int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_C (F_1 dx + F_2 dy + F_3 dz) = \int_a^b (F_1 x' + F_2 y' + F_3 z') dt$. Se o percurso de integração C for uma curva fechada, em vez de $\int_C \text{ter-se-á} \oint_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_C (F_1 dx + F_2 dy + F_3 dz) = \int_C (F_1 x' + F_2 y' + F_3 z') dt$.

 $\mathbf{F} \cdot d\mathbf{r}/dt$ com t = s - o comprimento de arco de C - é a componente tangencial de \mathbf{F} , sendo que este integral aparece naturalmente na Mecânica, onde permite calcular o trabalho feito por uma força \mathbf{F} no deslocamento ao longo de C. Chama-se a $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ o integral de trabalho. Podemos ver que $\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt$ é um integral definido ao longo do intervalo $a \le t \le b$ no eixo t na direcção positiva – a direcção do aumento de t. Este integral definido existe para \mathbf{F} contínua e uma curva consistindo um conjunto finito de muitas curvas simples, pois isto torna $\mathbf{F} \cdot \mathbf{r}'$ também contínua.

Exemplo – Encontre o valor do integral da linha y $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} \text{ quando } \mathbf{F}(\mathbf{r}) = -y\mathbf{i} + xy\mathbf{j} \text{ e } C \text{ \'e o arco}$ Bcircular de A a B na figura.



Podemos representar C por $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j}$

$$\left(0 \le t \le \frac{\pi}{2}\right)$$
. Assim $x(t) = \cos t$, $y(t) = \sin t$, portanto: $\mathbf{F}(\mathbf{r}(t)) = -y(t)\mathbf{i} + x(t)y(t)\mathbf{j} = -y(t)\mathbf{i}$

=
$$-\sin t\mathbf{i} + \cos t \sin t\mathbf{j}$$
. Diferenciando, $\mathbf{r}'(t) = -\sin t\mathbf{i} + \cos t\mathbf{j}$. Assim, $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} =$

$$= \int_{0}^{\frac{\pi}{2}} (-\sin t \mathbf{i} + \cos t \sin t \mathbf{j}) \cdot (-\sin t \mathbf{i} + \cos t \mathbf{j}) dt = \int_{0}^{\frac{\pi}{2}} (\sin^2 t + \cos^2 t \sin t) dt \quad \text{e então tem-se}$$

que
$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{0}^{\frac{\pi}{2}} \sin^{2}t dt + \int_{0}^{\frac{\pi}{2}} \cos^{2}t \sin t dt = \left[\frac{t}{2} - \frac{1}{4} \sin 2t \right]_{0}^{\frac{\pi}{2}} + \left[\cos^{2}t (-\cos t) \right]_{0}^{\frac{\pi}{2}} -$$

$$-\int\limits_0^{\pi/2}(-\cos t)(-2\cos t\sin t)dt$$
. Teremos que efectuar integração por partes, aplicando a

fórmula:
$$\int u dv = uv - \int v du$$
.

Se
$$u = \cos^2 t \Rightarrow du = 2\cos t \cdot (\cos t)' = 2\cos t(-\sin t) = -2\cos t \sin t$$
,

Se
$$dv = \sin t dt \Rightarrow v = \int \sin t dt = -\cos t$$
.

Temos assim o integral
$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \left(\frac{\pi}{2} - \frac{1}{4}\sin 2\frac{\pi}{2}\right) - \left(\frac{0}{2} - \frac{1}{4}\sin 2\times 0\right) - \left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - \frac{1}{4}\sin 2\frac{\pi}{2}$$

$$-\int_{0}^{\frac{\pi}{2}} 2\cos^{2}t \sin t dt = \frac{\pi}{4} - \frac{1}{4}\sin \pi + \frac{1}{4}\sin 0 - \left[\cos^{3}t\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} 2\cos^{2}t \sin t dt = \frac{\pi}{4} - \frac{1}{4} \times 0 + \frac{1}{4} \times 0$$

$$\times 0 - \left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = \frac{\pi}{4} - \left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt. \quad \text{Repare-se} \quad \text{que}$$

$$\int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt, \quad \log \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt + 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt, \quad \log \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt, \quad \log \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt, \quad \log \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt, \quad \log \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt, \quad \log \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} - 2 \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt, \quad \log \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt dt$$

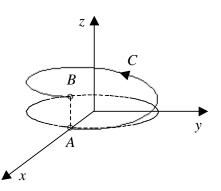
$$= -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} \iff 3\int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}} \iff \int_{0}^{\frac{\pi}{2}} \cos^{2} t \sin t dt = -\frac{1}{3} \left[\cos^{3} t\right]_{0}^{\frac{\pi}{2}}.$$
 Então

$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \frac{\pi}{4} - \frac{1}{3} \left[\cos^{3} t \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4} - \frac{1}{3} \left(\cos^{3} \frac{\pi}{2} - \cos^{3} 0 \right) = \frac{\pi}{4} - \frac{1}{3} \left(0 - 1^{3} \right) = \frac{\pi}{4} + \frac{1}{3} \approx 1{,}19.$$

Repare-se que neste caso, o desenvolvimento do integral de linha foi feito no *plano*. Levanta-se agora uma questão importante. Será que o valor de $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ depende da escolha da representação do arco circular C? A resposta é não, como veremos no teorema.

Exemplo – Para vermos que o método de cálculo dos integrais de linha no espaço é o mesmo que no plano considerado no exemplo anterior, encontre-se o valor de $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ quando

$$\mathbf{F}(\mathbf{r}) = z\mathbf{i} + x\mathbf{j} + y\mathbf{k}$$
 e C é a hélice da figura:
onde $\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j} + 3t\mathbf{k}$ com $(0 \le t \le 2\pi)$.



De $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + 3t \mathbf{k}$ tem-se $x(t) = \cos t$, $y(t) = \sin t$, z(t) = 3t. Assim, $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = (3t\mathbf{i} + \cos t\mathbf{j} + \sin t\mathbf{k}) \cdot (-\sin t\mathbf{i} + \cos t\mathbf{j} + 3\mathbf{k})$. O produto interno ϵ

$$3t(-\sin t) + \cos^2 t + 3\sin t. \qquad \text{Então} \qquad \int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_0^{2\pi} \left(-3t \sin t + \cos^2 t + 3\sin t \right) dt =$$

$$= \int_0^{2\pi} -3t \sin t dt + \int_0^{2\pi} \cos^2 t dt + \int_0^{2\pi} 3\sin t dt. \text{ Começemos por integrar por partes o primeiro}$$

$$\text{integral. Se } \int_u t \sin t dt = \int_u dv = uv - \int_v du \quad \text{com } u = t \Rightarrow du = dt \quad \text{e} \quad dv = \sin t dt \Rightarrow$$

$$\Rightarrow v = \int_v \sin t dt = -\cos t, \quad \text{então} \quad \int_v t \sin t dt = t(-\cos t) - \int_v (-\cos t) dt = -t \cos t +$$

$$+ \int_v \cos t dt = -t \cos t + \sin t. \quad \text{Tem-se então que } \int_v \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = -3[-t \cos t + \sin t]_0^{2\pi} +$$

$$+ \left[\frac{t}{2} + \frac{1}{4} \sin 2t \right]_0^{2\pi} + 3[-\cos t]_0^{2\pi} \quad \text{ou seja que } \int_v \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = -3[[-2\pi \cos 2\pi + \sin 2\pi] -$$

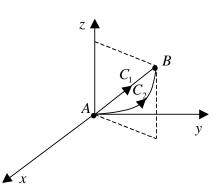
$$- [-0\cos 0 + \sin 0]] + \left[\frac{2\pi}{2} + \frac{1}{4} \sin 2 \times 2\pi \right] - \left[\frac{0}{2} + \frac{1}{4} \sin 2 \times 0 \right] - 3[\cos 2\pi - \cos 0] \quad \text{ou}$$

$$\int_v \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = -3[[-2\pi \times 1 + 0] - [0 + 0]] + \left[\frac{2\pi}{2} + \frac{1}{4} \times 0 \right] - \left[0 + \frac{1}{4} \times 0 \right] - 3[1 - 1] = -3(-2\pi) +$$

$$+ \pi + 0 - 0 - 3 \times 0 = 6\pi + \pi = 7\pi \approx 21.99.$$

Será que o valor $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ altera se integrarmos do mesmo A ao mesmo B como antes, mas ao longo de outro percurso? A resposta é sim, em geral:

Exemplo – Avaliemos o integral de linha $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} \quad \text{com } \mathbf{F}(\mathbf{r}) = 5z\mathbf{i} + xy\mathbf{j} + x^2z\mathbf{k} \quad \text{ao longo}$ de dois percursos diferentes com o mesmo ponto inicial A: (0,0,0) e o mesmo ponto terminal B: (1,1,1), tal como na figura. Tome-se, nomeadamente,



- (a) C_1 : o segmento de recta $\mathbf{r}_1(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}$ com $0 \le t \le 1$, e
- (b) C_2 : o arco parabólico $\mathbf{r}_2(t) = t\mathbf{i} + t\mathbf{j} + t^2\mathbf{k}$ com $0 \le t \le 1$.
- (a) Substituindo \mathbf{r}_1 em \mathbf{F} obtém-se $\mathbf{F}(\mathbf{r}_1(t)) = 5t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$. Precisamos de achar

$$\mathbf{r}_{1}' = \mathbf{i} + \mathbf{j} + \mathbf{k} . \text{ Assim, o integral sobre } C_{1} \notin \int_{C_{1}} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{F}(\mathbf{r}_{1}(t)) \cdot \mathbf{r}_{1}'(t) dt =$$

$$= \int_{0}^{1} \left(5t\mathbf{i} + t^{2}\mathbf{j} + t^{3}\mathbf{k}\right) \cdot \left(\mathbf{i} + \mathbf{j} + \mathbf{k}\right) dt = \int_{0}^{1} \left(5t + t^{2} + t^{3}\right) dt = 5\int_{0}^{1} t dt + \int_{0}^{1} t^{2} dt + \int_{0}^{1} t^{3} dt \text{ isto } \acute{\mathbf{e}},$$

$$\int_{C_{1}} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = 5\left[\frac{t^{2}}{2}\right]_{0}^{1} + \left[\frac{t^{3}}{3}\right]_{0}^{1} + \left[\frac{t^{4}}{4}\right]_{0}^{1} = \frac{5}{2} + \frac{1}{3} + \frac{1}{4} = \frac{3}{12}.$$

(b) Similarmente, substituindo \mathbf{r}_2 em \mathbf{F} e calculando \mathbf{r}_2' obtém-se o integral de linha sobre o percurso C_2 : $\int_{C_{21}} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{F}(\mathbf{r}_2(t)) \cdot \mathbf{r}_2'(t) dt = \int_{0}^{1} (5t^2 + t^2 + 2t^5) dt = \frac{5}{3} + \frac{1}{3} + \frac{2}{6} = \frac{2}{3}.$

Verifica-se que os dois resultados são diferentes, embora os pontos terminais sejam os mesmos. Isto mostra que o valor de um integral de linha será em geral dependente não só de \mathbf{F} mas dos pontos A, B do percurso mas também do percurso ao longo do qual se integra de A a B.

O trabalho W realizado por uma força constante \mathbf{F} no deslocamento ao longo de um segmento de recta \mathbf{d} é $\mathbf{F} \cdot \mathbf{d}$. Isto sugere que se defina o trabalho W realizado por uma força variável \mathbf{F} no deslocamento ao longo de uma curva $C : \mathbf{r}(t)$ como o limite dos trabalhos realizados em deslocamentos ao longo de pequenas cordas de C, e que se mostre que isto permite definir W pelo integral de linha $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$. Para isso escolhe-se pontos $t_0(=a) < t_1 < \cdots < t_n(=b)$. Então o trabalho ΔW_m realizado por $\mathbf{F}(\mathbf{r}(t_m))$ no deslocamento de $\mathbf{r}(t_m)$ a $\mathbf{r}(t_{m+1})$ é $\Delta W_m = \mathbf{F}(\mathbf{r}(t_m)) \cdot [\mathbf{r}(t_{m+1}) - \mathbf{r}(t_m)] \approx \mathbf{F}(\mathbf{r}(t_m)) \cdot \mathbf{r}'(t_m) \Delta t_m \quad (\Delta t_m = t_{m+1} - t_m)$. A soma destes n trabalhos é $W_n = \Delta W_0 + \cdots + \Delta W_{n-1}$. Se escolhermos pontos e considerarmos W_n para qualquer n arbitrário mas de modo a que o maior Δt_m se aproxime de zero quando $n \to \infty$, então o limite de W_n à medida que $n \to \infty$ existe e é integral de linha $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ desde que \mathbf{F} seja continua e C uma curva constituida por um conjunto finito de curvas simples,

o que torna $\mathbf{r}'(t)$ contínua, excepto em muitos pontos – finitos – onde C possua cantos ou pontas.

Exemplo – Se \mathbf{F} for uma força, $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ representa o trabalho. Seja t o tempo e $\frac{d\mathbf{r}}{dt} = \mathbf{v}$, a velocidade. Podemos então escrever $W = \int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{v}(t) dt$. Pela segunda Lei de Newton, força = massa×aceleração, $\mathbf{F} = m\mathbf{r}''(t) = m\mathbf{v}'(t)$, onde m é a

massa do corpo deslocado. Substituindo em $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ tem-se $W = \int_{a}^{b} m\mathbf{v}' \cdot \mathbf{v} dt =$

$$= \int_{a}^{b} m \left(\frac{\mathbf{v} \cdot \mathbf{v}}{2} \right)' dt = \frac{m}{2} |\mathbf{v}|^{2} \Big|_{t=a}^{t=b} \text{ onde } m |\mathbf{v}|^{2} / 2 \text{ \'e a energia cin\'etica. Assim o trabalho}$$

realizado iguala o ganho em energia cinética. Isto representa uma lei básica em Mecânica.

Propriedades dos Integrais de Linha.

Das propriedades já familiares dos integrais obtemos as correspondentes fórmulas para os integrais de linha $\int_{\cdot} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$:

/
$$\int_C k\mathbf{F} \cdot d\mathbf{r} = k \int_C \mathbf{F} \cdot d\mathbf{r}$$
 (k constante),

 $\int_{C} (\mathbf{F} + \mathbf{G}) \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot d\mathbf{r} + \int_{C} \mathbf{G} \cdot d\mathbf{r}$ onde a orientação de C é a mesma nos três integrais,

/
$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{r}$$
 onde o percurso C onde o percurso C é subdividido em dois têm a mesma orientação A or even C_{1} or even C_{2} que que C :.

Se é suposto que um integral de linha represente quantidades físicas, tal como o trabalho, a escolha de uma ou outra representação de uma dada curva C não deveria ser essencial, desde que as direcções positivas sejam as mesmas em ambos os casos. É isso que é mostrado a seguir:

 $\frac{\text{Teorema}}{\text{Teorema}} - \text{Quaisquer representações de } C \text{ que produzam a mesma direcção positiva} \\ \text{em } C \text{, também permitem obter o mesmo valor do integral de linha } \int \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} \, .$

Demonstração – Representa-se C em $\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ usando um outro parâmetro t^* dado por uma função $t = \phi(t^*)$ que tem uma derivada positiva e é tal que $a^* \le t^* \le b^*$ corresponde a $a \le t \le b$. Então, escrevendo $r(\phi(t^*)) = r^*(t^*)$ e usando a regra da cadeia, tem-se $dt^* = (dt^*/dt)dt$ e assim: $\int_{C} \mathbf{F}(\mathbf{r}^*) \cdot d\mathbf{r}^* = \int_{a^*}^{b^*} \left[\mathbf{F}(\mathbf{r}^*(t^*)) \cdot \frac{d\mathbf{r}^*}{dt^*} \right] dt^* = \int_{a^*}^{b^*} \mathbf{F}(\mathbf{r}(\phi(t^*))) \cdot \frac{d\mathbf{r}}{dt} \frac{dt}{dt^*} dt^* = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt = \int_{a}^{b} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$.

Independência do Percurso nos Integrais de Linha.

O valor de um integral de linha $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_C (F_1 dx + F_2 dy + F_3 dz)$ ao longo de um percurso C de um ponto A a um ponto B depende em geral, não somente de A a B, mas também do percurso C ao longo do qual é efectuada a integração. Já o vimos no terceiro exemplo apresentado, o que levanta a questão da existência de condições para a independência do percurso, de forma a obter-se o mesmo valor de integração de A a B ao longo de qualquer percurso C. Este facto tem uma importância prática muito significativa. Por exemplo, na mecânica, independência do percurso pode significar que tem que se realizar o mesmo trabalho, independentemente do tipo de percurso, curto e difícil ou longo e suave, etc. Diz-se que um integral de linha $\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} \ \text{é independente do percurso num domínio } D \ no \ espaço \ \text{se}, \text{ para qualquer}$ par de pontos A, B em D, o integral tem o mesmo valor para todos os percursos em D que começam em A e terminam em B. Um exemplo prático de critérios é por exemplo o seguinte:

Demonstração – Seja $\mathbf{F} = \operatorname{grad} f$ definido para uma função f em D e seja C qualquer percurso em D de qualquer ponto A a qualquer ponto B, dado por $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, $a \le t \le b$. Então de $F_1 = \frac{\partial f}{\partial x}$, $F_2 = \frac{\partial f}{\partial y}$, $F_3 = \frac{\partial f}{\partial z}$ e pela regra da cadeia, tem-se $\int_A^B (F_1 dx + F_2 dy + F_3 dz) = \int_A^B \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz\right) = \int_a^b \frac{df}{dt} dt = f[x(t), y(t), z(t)]_{t=a}^{t=b} = f(B) - f(A)$. Isto mostra que o valor do integral é simplesmente a diferença dos valores de f nos pontos f0 e f1 de f2 e f3 de f3 de f4 e f5 de f6 e f6, portanto, independente do percurso f6.

A última fórmula da demonstração $\int_A^B (F_1 dx + F_2 dy + F_3 dz) = f(B) - f(A) \text{ com}$ $\mathbf{F} = \text{grad} f \text{ \'e an\'aloga \`a fórmula } \int_a^b g(x) dx = G(x) \Big|_a^b = G(b) - G(a) \text{ com } G'(x) = g(x)$ utilizada para integrais definidos em An\'alise e deve ser aplicada sempre que um integral de linha \'e independente do caminho.

Exemplo – Avalie o integral
$$I = \int_C (3x^2 dx + 2yz dy + y^2 dz)$$
 de $A: (0,1,2)$ a $B: (1,-1,7)$ mostrando que \mathbf{F} tem um potencial e aplicando $\int_A^B (F_1 dx + F_2 dy + F_3 dz) = f(B) - f(A)$.

Se **F** tem um potencial f, deve ter-se $f_x = F_1 = 3x^2$, $f_y = F_2 = 2yz$, $f_z = F_3 = y^2$. Mostraremos que podemos satisfazer estas condições. Integrando e diferenciando temos $f = x^3 + g(y,z)$, $f_y = g_y = 2yz$, $g = y^2z + h(z)$, $f_z = y^2 + h' = y^2$, h' = 0, h = 0. Então $f(x,y,z) = x^3 + y^2z$ e, através de $\int_A^B (F_1dx + F_2dy + F_3dz) = f(B) - f(A)$, tem-se I = f(1,-1,7) - f(0,1,2) = 1 + 7 - (0+2) = 6.