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T r a c k i n g  a n d  S e n s i n g  i n  t h e  W i l d

Monitoring Stress 
Arousal in the Wild

M any taxing situations of 
everyday life can cause neg-
ative arousal—also known 
as stress arousal. During 
such situations, our hearts 

pound, we become short-winded, and we start 
sweating. Professional musicians, athletes, and 
many others regularly experience stress arousal 
as part of their professional activities. Stress 
arousal can impair our ability to perform and 
increase the probability of making mistakes. 
Furthermore, repeatedly having a negative 

experience during stressful 
situations can affect behavior 
and well-being, which can lead 
to situation avoidance and cur-
tail professional careers.

Monitoring stress arousal 
in natural environments is 
challenging, because no gold 
standard exists for measur-
ing it; responses to stressors 

can vary across individuals, situations, and 
stressor types; and stressful situations in daily 
life can occur at random—in different places 
and with varying duration and intensity. To 
measure stress arousal, researchers often use 
self-reports that qualify personal stress per-
ception. However, self-reporting is a subjec-
tive measure. Furthermore, its practical use 
in everyday life is limited, because respon-
dents easily forget relevant arousal events, 
and active engagement during reporting  

interferes with other daily activities and regu-
lar behavior.

Recent research shows that wearable sys-
tems can monitor stress-related biosignals, and 
selected analysis methods can reveal objective 
measures of an individual’s stress arousal out-
side of labs. As a first step toward developing 
stress-arousal assistant systems, we present se-
lected studies deploying wearable monitoring 
systems, deriving information about stressors 
and identifying existing challenges in this area.

Measuring the Intangible
Stress-arousal monitoring can use various hu-
man biosignals. Researchers have used sensors 
attached to or in close proximity to the body (for 
more information, see the “On-Body Sensing 
Modalities for Arousal Monitoring” sidebar). 
However, not all modalities are equally appli-
cable in daily life: miniaturization and comfort 
are key, but sensitivity to body motion can mask 
stress arousal in sensor signals. For example, 
your heart rate can increase in a stressful situ-
ation or when climbing stairs. Subsequently, 
biosignal monitoring and analysis approaches 
must disentangle physical activity from subtle 
changes pertaining to psychological stressors.

Only a few researchers have started to address 
the stress-arousal monitoring challenge. (The 
“Assessing Stress Arousal in the Wild” sidebar 
presents related work.) Major considerations 
include the monitoring system’s size, weight, 
and battery runtime, as well as its reliability 

Wearable sensors can provide continuous biosignal measurements, 
which systems can use to infer psychological stress arousal. The authors 
deploy such sensors to monitor a public speaker, an on-stage musician, 
an Olympic ski jumper, and people during everyday life, quantifying 
stress arousal in varying contexts.
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and robustness when used during daily 
life activities. In addition, researchers 
are investigating algorithmic solutions 
to detect and quantify stress arousal 
from continuous sensor data while ac-
counting for the masking effect of body 
motion. Monitoring systems should 
also provide activity and context in-
formation that can be associated with  

sensor-estimated stress arousal, which 
could help qualify and interpret stress-
ors. For example, working at the office 
might generate different stress-arousal 
patterns than commuting, competing in 
a sporting event, or performing on stage.

Stress-arousal assistant systems can 
help assess and counteract the down-
sides of stress arousal. An assistant 

system would continuously monitor a 
user’s stress-arousal state and support 
the user if stress arousal started to dete-
riorate his or her performance or well-
being. Although reliable and robust 
wearable sensor systems have become 
feasible, we have yet to develop meth-
odological approaches for understand-
ing stress arousal.

T he body’s stress-arousal reaction involves different bio-

logical systems that generate biosignals. Biosignals can 

be measured through a variety of wearable sensing modalities. 

Table A summarizes noninvasive wearable biosignal sensing 

modalities, typical measurements that can be extracted with 

these sensing modalities, and their typical on-body sensing 

sites.1–7

Some measurements, such as heart rate, can be extracted 

from several sensing modalities, but their placement must be 

considered. Photoplethysmograms (PPGs) placed on the finger 

would limit the natural use of hands and interfere with some 

activities of daily living. Similarly, electrodes placed in the 

face to measure facial muscle activity alter the user’s natural 

appearance.

Using additional accessories, for example, glasses containing 

electrodes for an electrooculogram (EOG), a cap or headband 

with electrodes for an electroencephalogram (EEG) or near- 

infrared spectroscopy (NIRS), or earrings with PPGs, can allevi-

ate appearance issues. In addition, researchers have combined 

biosignal sensing modalities and incorporated other on-body 

sensing modalities, such as body motion in multimodal sensor 

systems (for more information, see the “Assessing Stress-Arousal 

in the Wild” sidebar).
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On-Body Sensing Modalities for Arousal Monitoring

TABLE A 
An overview of wearable biosignal sensing modalities, typical measurements that can be extracted  

with these sensing modalities, and their typical on-body sensing sites.

Sensing modality Typical measurement Sensing site

Electrocardiogram (ECG)1 Heart rate (variability) and ECG-waveform segments Thorax

Electrodermal activity (EDA)2 Skin sweat level and fluctuations Palm, foot, and wrist

Electroencephalogram (EEG)3 Brain waves (alpha, beta, and theta) Scalp

Electromyogram (EMG)3 Muscle tension, facial expressions, and eye blink rate Upper back and face

Electrooculogram (EOG)3 Eye movement and blink rate Near the eye

Impedance cardiogram (ICG)4 Heart rate, heart stroke volume, and pre-ejection period Thorax and neck

Inductive plethysmography (RIP)5 Respiration rate and tidal volume Thorax

Near-infrared spectroscopy (NIRS)6 Blood oxygen saturation Scalp

Photoplethysmogram (PPG)7 Heart rate, blood oxygen saturation, and blood pressure Finger and ear

Sphymomanometer3 Blood pressure Upper arm and finger
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In addition to researching everyday-
life stress-arousal conditions, our 
work builds on investigations in nat-
ural stressful situation with known  
stressors—that is, context-specific con-
ditions. As we demonstrate, develop-
ing wearable systems that can identify  
context-specific conditions moves us 
closer to stress-arousal assistance in 
everyday life.

Stress-Arousal  
Monitoring Conditions
In lab-based monitoring, researchers 
can monitor the type and timing (onset, 
duration, and frequency) of a stressor, 
collect instant self-reports, and record 
sensor data under standardized and  

repeatable conditions. Outside of a lab, 
stressful situations naturally unfold 
without options to apply lab-like control.

When moving to daily-life monitor-
ing, our approach has been to gradu-
ally release controlled conditions used 
in lab-based investigations, where 
stressors are known and controllable. 
We observed that various natural en-
vironments can serve as intermediate 
steps, providing known stressors and 
activities. For example, giving a pub-
lic talk is a known stressful condition. 
We refer to such conditions as context- 
specific monitoring, filling a gap be-
tween purely lab-based and daily-life 
conditions. Figure 1 illustrates the dif-
ferent monitoring conditions.

In context-specific monitoring, the 
stressor and its timing typically can’t 
be controlled. However, knowing the 
stressor, context, and activities in-
volved lets us deploy targeted wearable 
monitoring systems and apply specific 
analysis techniques. In context-specific 
conditions, we investigated which phys-
iological signals can provide relevant 
psychological indicators. We also stud-
ied the extent to which body-motion 
noise impairs this identification.

In contrast to context-specific con-
ditions, monitoring in daily-life condi-
tions must deal with different stressors 
simultaneously. Moreover, activities 
and contexts vary more widely in this 
condition.

R esearchers in behavioral sciences often use self-reporting 

of participants’ experiences and perception. The day 

reconstruction method assesses activities, stressful events, and 

other affective experiences during the day in a retrospective 

manner.1 Similarly, the daily hassles and uplifts scale assesses the 

experienced positive and negative events during the day.2 In 

contrast, the experience sampling method asks users questions 

(usually about perceived conditions) at random intervals during 

the day.3

In addition to self-reports, researchers use wearable sensors 

to monitor body motion and stress-arousal-related biosignals. 

However, only a few works have investigated wearable sensing 

in natural settings. Among the few studies, most faced problems 

regarding sensor system reliability and robustness, a lack of 

algorithmic solutions to detect and quantify stressful episodes 

from sensor signals, and accounting for the influence of body 

motion.

Juha Pärkkä and his colleagues explored the relationship be-

tween biosignal, environmental, and psychological measures in 

people suffering from work overload.4 Rosalind Picard and  

her colleagues developed a device that can monitor electro-

dermal activity (EDA) during daily living.5 Aiming at distin-

guishing high and low arousal states during everyday life,  

Jennifer Healey and her colleagues developed a sensing system 

combining EDA, heart rate, and a mobile phone to collect users’ 

self-reports.6 Kurt Plarre and his colleagues aimed to distinguish 

stress from no-stress episodes during sedentary activities of 

daily living using five biosignals.7 Michael Myrtek and his col-

leagues developed the additional heart rate (AHR) algorithm 

to detect onsets of emotional events by jointly analyzing heart 

rate and body acceleration during daily living,8 which we also 

used in our work.
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Case Studies
Here, we present four studies illustrat-
ing the benefits of wearable monitor-
ing and analysis in natural settings 
under context-specific and daily-life 
conditions.

Monitoring a Public Speaker
Speaking in front of an audience is a 
stressful situation for many people and 
can impair oral fluency and informa-
tion recall. To regulate stress arousal 
and improve the presentation experi-
ence, we introduced a talk assistant.1 
The talk assistant detects stress arousal 
and provides personalized feedback, 
conveyed through the speaker’s on-
body system or an external infrastruc-
ture (such as displays near the speaker). 
Different types of relaxation feedback 
have been proposed in the literature, 
such as simple reminders of breathing 
or speaking styles. Figure 2a shows 
our context-specific monitoring of  
a speaker.

Our system can be worn during pub-
lic talks without interfering with the 

speaker or being noticed by the audi-
ence. The sensing system comprised 
a wireless heart rate monitor (HRM) 
and a belt-integrated computer, called 
the QBIC. In addition, we developed a 
miniature sensor node that measures 
electrodermal activity (EDA), accelera-
tion, and temperature. The EDA mea-
surement circuit comprised a Wheat-
stone bridge and a microcontroller to 
calculate skin conductance values. The 
sensor node features a miniature form 
factor of 21 × 17 × 6 millimeters and 
weighs 15 grams, including the elec-
trodes and battery.

Figure 2b shows the wearable sensor 
system signals during a PhD student’s 
presentation for approximately 20 re-
searchers. These four signals measure 
heart rate, skin conductance level at 
the wrist, total acceleration dynam-
ics of the wrist, and total acceleration 
dynamics of the thigh. As the top sig-
nal shows, the speaker’s heart rate im-
mediately increased at the start of the  
talk and decreased at the start of  
the Q&A period. In contrast, the skin  

conductance level steadily increased 
during the talk and recovered after the 
Q&A period. We found this pattern in 
additional study participants, confirm-
ing the findings illustrated here. For this 
example, we concluded that heart rate 
and EDA could complement each other, 
as they reacted differently to the talk 
and Q&A period.

Because we targeted speaker sup-
port during the talk, we investigated 
relevant heart activity features that 
could be used to adapt speaker feed-
back.1 We monitored five PhD stu-
dents during real conference talks 
and found that their heart rates sig-
nificantly increased, consistently,  
between the talk and the pre- and 
post-talk periods. Interestingly, in this 
natural setting, heart rate variability 
(HRV) features—often reported to in-
dicate stress arousal in lab studies—
showed little significance for some 
speakers. HRV features are probably 
more sensitive to slight body mo-
tion than heart rate. The maximum 
heart rate occurred within the first 

Figure 1. Stress-arousal monitoring conditions. (a) In lab-based monitoring, researchers control the stressor type and timing 
(onset, duration, and frequency) and receive instant subject reports and sensor data. In contrast, (b) context-specific and  
(c) daily-life monitoring use stressors embedded in natural settings, with constraints on sensor data quality and the details  
of the monitored information.
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1.5 minutes, and recovery to the pre-
talk heart rate took up to 11 minutes, 
suggesting two stress-arousal phases 

(confrontation and adaptation). Heart 
rate classification discriminated the 
two phases.

A talk assistant system could capital-
ize on talk-phase information (confron-
tation and adaptation) and the heart 
rate to trigger possible relaxation feed-
back to the speaker. In addition to au-
tomatic stress-arousal estimation, the 
speaker should have the option to man-
ually adjust relaxation feedback de-
pending on the expected stress-arousal 
level. To extend our talk assistant sys-
tem, we plan to incorporate EDA and 
add other modalities (such as voice and 
body language) known to indicate talk 
performance.

Monitoring a Musician on Stage
A musical performance requires finely 
tuned vocal or instrumental skills that 
can be affected by stress arousal— 
often referred to in the performing arts 
as stage fright. Options for assessing 
stress arousal during an on-stage per-
formance have been limited to retro-
spective self-report and expert observa-
tion. Using sensor-based measurements 
to complement subjective impressions 
can help us better understand how stage 
fright can affect performance quality so 
we can develop coping strategies.

In this context-specific condition, we 
developed a sensor system for monitor-
ing and analyzing a professional cellist 
during performances.2 The system com-
prised acceleration sensors and an elec-
trocardiogram (ECG) recorder. We at-
tached the acceleration sensors to both 
wrists and placed the ECG recorder on 
the cellist’s chest (see Figure 3a).
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Figure 2. The wearable talk assistant, 
which helps manage stress arousal 
during public speaking. (a) Context-
specific monitoring of a speaker during 
a presentation. The wireless sensing 
system comprises a heart rate monitor 
(HRM), an electrodermal activity sensor 
node (EDA), and the Q-belt integrated 
computer (QBIC). (b) An example of a 
talk recording showing the heart rate, 
skin conductance level (SCL) measured 
at the wrist, and the total acceleration 
dynamics of both the wrist and thigh.
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Using our wearable system, we moni-
tored the cellist during three on-stage 
performances in front of an audience 
of approximately 20 music students 
and professors. Across multiple perfor-
mances, we measured significant trends 
in heart rate and body motion. At the 
same time, the subjective perception of 
stage fright and the number of technical 
playing errors decreased. In particular, 
the sensors detected a 6 percent increase 
in bowing arm acceleration and a 2 per-
cent decrease in heart rate. The increase 
in bowing arm acceleration could be in-
terpreted as a release in muscle freezing 
(muscle relaxation). Muscle freezing 
can slow down fine motor skills dur-
ing the performance. This conjecture 
was further supported by the fact that 
the cellist played the piece faster across 
multiple performances. The cellist re-
ported a decrease in perceived stage 
fright—a trend reflected in the heart 
rate measurements. During the first 

performance, technical playing errors 
occurred more frequently and were 
more likely to occur during stressful 
passages. The error rate dropped sig-
nificantly and was equally likely during 
stressful and other passages for the last 
performance.

Professors and students of Zurich 
University of the Arts stated that our 
approach provided new assistance for 
identifying stage fright, which they 
otherwise couldn’t assess. In particu-
lar, it helped track subtle changes in 
acceleration dynamics and heart rate 
across multiple performances in rela-
tion to performance quality and stress-
ful passages. In this context-specific 
monitoring condition, a stage-fright 
assistant system could not only capture 
heart rate and body motion but also 
additional information about technical 
playing errors and stressful passages, as 
indicated by the musician. Using this 
information, individual stage-fright 

perception and actual performance 
quality could be related to objective 
sensor measures.

Figure 3b shows an example of the 
cellist’s annotation of stressful passages 
and our annotation of technical playing 
errors. Figure 3c shows their mapping 
into the heart rate signal during per-
formance. In the future, we plan to use 
wearable systems to make musicians 
and other performing artists aware of 
their stage fright and help them over-
come it.

Monitoring an Olympic Champion
Ski jumping competitions are stress-
ful. In ski jumping, an optimal mental 
state is considered critical to top per-
formance. For example, stress arousal 
impairs finely tuned body perception 
required for precise timing of high-
speed motion sequences at takeoff. As-
sessing and regulating stress arousal is 
thus essential for success. However, no 

Figure 3. Context-specific stress-arousal monitoring of a cellist on stage. (a) The wearable sensor system: acceleration loggers, 
an ECG recorder, and their positioning on the cellist’s body. (b) An excerpt from a score showing the stressful passages, as 
annotated by the cellist, and our annotations of technical playing errors. (c) The heart rate signal of the cellist during one 
performance together with stressful passages, as annotated by the cellist in the score, and technical playing errors.
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current solutions objectively measure 
stress arousal in ski jumping and estab-
lish an understanding of its character-
istics during competitions.

We introduced context-specific 
monitoring in professional ski jump-
ing for the first time during competi-
tions.3 We developed a heart activity 
analysis approach for the 2010 Olym-
pic champion, Simon Ammann. The 
wearable system was a miniature and 
lightweight ECG recorder with an in-
tegrated accelerometer, attached to the 
athlete’s chest. The acceleration signal 
provided the segmentation informa-
tion of jumps and jumping phases.  
Figure 4a depicts the ECG recorder and 
its attachment.

Our context-specific analysis pro-
cedure had two parts. First, we ana-
lyzed the heart rate during three dif-
ferent competitive situations (training, 
qualification, and competition) with 
respect to the ski-jumping phases—
inrun, flight, and outrun. Second, we 
analyzed the heart rate pattern during 

pre-performance routines before jump-
ing in competitions when the athlete 
regulated his arousal.

The coaches considered heart rate 
patterns that are reproducible across 
competitions as an indicator of an ef-
fective pre-performance routine. For 
heart rate pattern analysis, we used 
a dynamic time-warping-based simi-
larity measure and ranking scheme. 
Using our sensing approach, Am-
mann recorded 99 hours of data, in-
cluding 37 hill jumps in World Cup 
competitions and the 2010 Winter 
Olympics.

We found that stress arousal based 
on heart rate increased significantly 
with the competitiveness of the jump-
ing situation, from training (118 beats 
per minute), to qualification (152 
bpm), to competition (168 bpm). The 
athlete’s self-report of stress-arousal 
level confirmed this trend. Independent 
of the jump situation, we observed re-
producible heart rate patterns dur-
ing jumping: the heart rate dropped  

during inrun until takeoff, increased 
during the flight, and peaked at the end 
of the outrun.

Figure 4b depicts the heart rate pat-
tern during jumping and compares 
heart rate level during training and 
competitions. Ammann ranked first 
for almost all competitions, so we con-
cluded that this pattern during jump-
ing reflected his optimal stress-arousal 
state.

In addition, the analysis of heart rate 
patterns revealed additional informa-
tion related to stress arousal—that is, 
deviations in pre-performance routines. 
Our procedure ranked the heart rate 
pattern of the pre-performance routine 
before the final jump of the Olympics  
as most dissimilar (this heart rate pat-
tern is depicted in Figure 4b, too). For 
this particular jump, the athlete re-
ported extreme levels of stress arousal 
and difficulties in regulating it before 
taking the gate.

The athlete and his coaches reported 
that the quantification of stress arousal 

Figure 4. Context-specific wearable monitoring of stress arousal in professional ski jumping. (a) An electrocardiogram (ECG) 
recorder and its placement on the athlete’s body. (b) Typical heart rate patterns recorded during trainings and competitions, 
including the 2010 Olympics. The pattern of the Olympics jump deviated from the standard competition pattern before jumping 
during the athlete’s pre-performance routine when stress-arousal regulation was impaired. (c) Ranking of heart rate patterns 
during pre-performance routines in competitions. Higher mean ranks indicate lower similarity (the jump number appears in 
parentheses).
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by measuring heart rate and its pat-
terns helped compare the subjective 
perception to objective measurements 
across competitions throughout the 
season. After each competition, we 
provided Ammann and his coaches 
with the heart rate measurements and  
patterns—see, for example, the visual-
ization shown in Figure 4b. The coaches 
considered our wearable stress-arousal 
assistance a valuable instrument for 
complementing technical skills training 
in the future, especially for developing 
personal pre-performance routines for 
newcomer athletes.

In the future, we plan to continue 
our collaboration in ski jumping and 
extend the heart rate analysis by incor-
porating expert ratings of physical per-
formance parameters, such as timing 
at takeoff.

Monitoring Daily-Life Activities
When approaching daily-life condi-
tions, wearable monitoring becomes 
substantially more difficult because un-
predictable situations and encounters 
can arouse stress. The frequency, dura-
tion, intensity, and personal context of 
stress arousal are variable, and physi-
cal activity can create noise in stress-
arousal patterns in biosignals.

We built a multimodal framework 
incorporating activity-context in-
formation to estimate stress-arousal 
phases in daily life. A stress-arousal 
phase is described by onset, duration, 
and intensity. Here, we overview the 
approach used to investigate stress 
arousal. We don’t analyze accuracy 
here, because reference information 
on stress arousal is hard to obtain in 
free living. Instead, we show how stress 
arousal can be filtered using daily 
activities.

Our framework for stress-arousal 
estimation comprises the detection 
of arousal onsets (activations) by 
measuring heart rate and body ac-
celeration and subsequently estimat-
ing phase duration and intensity. The 
detection of activations is based on a 
refined version of the additional heart 

rate (AHR) algorithm, which was  
developed and evaluated by psycholo-
gists as an indicator of general psycho-
logical arousal.4 The AHR algorithm 
fuses heart rate and body-acceleration 
information to identify those minutes 
in which heart rate exceeds the level 
estimated from physical activity in-
tensity. However, the original AHR 
algorithm used physical activity in-
tensity only, so detection is suscepti-
ble to other influences not related to 
stress arousal, such as body-posture 
transitions.

We implemented a filtering scheme 
incorporating a set of basic activity 
classes, called primitives (including 
“sit,” “stand,” and “walk”) to elimi-
nate activations influenced by activity 
transitions. The rationale behind our 
approach is that activations with con-
stant activity context as represented by 
the set of primitives are more likely to 
be of psychological origin than those 
where the activity context changes dur-
ing the minute of activation.

Finally, we introduced a segmenta-
tion algorithm using the AHR signal 
and an activation-specific recovery 
detector to estimate the stress-arousal 
phase duration and intensity. Our 
developed procedure is depicted in  
Figure 5a.

We tested our approach with four 
PhD students during 182 hours of their 
daily life. The monitoring system com-
prised an HRM, two wireless accelera-
tion sensor nodes attached to the chest 
and thigh, and the QBIC. Figure 5b 
shows the on-body monitoring system 
and sensor placement. The participants 
kept a diary of nonoverlapping daily 
activities (such as eating, working, and 
using public transport) and completed 
mood-state questionnaires during the 
day—in particular, as soon as possible 
after they perceived a stress-arousal 
situation.

Using our phase-estimation proce-
dure, we obtained different individual  
and daily-activity-specific stress-
arousal characteristics, although both 
the distribution of daily activities and 

the amount of physical activity were 
comparable across participants. On 
average, arousal-phase duration was 
between two and five minutes, and all 
participants showed the highest arousal 
intensity in the office environment. 
Some questionnaires coincided with de-
tected arousal phases, suggesting that 
some salient situations were instantly 
reported. Most questionnaires were 
completed randomly during the day, 
and we concluded that these reports 
weren’t related to estimated stress-
arousal phases.

Figure 5c shows the estimated prob-
abilities P(A|R) of being in an arousal 
phase A during a daily activity R. 
P(A|R) denotes the ratio between total 
time of an arousal phase A during daily 
activity R and the total duration of the 
respective daily routine R. As a promi-
nent example, the estimated P(A|R) 
was highest for participant 4 during 
eating. From the activity diary of par-
ticipant 4, we learned that mealtimes 
were variable and coincided with work, 
transport, or conversation. Thus, we 
concluded that engagement in multi-
ple tasks at once was related to higher  
estimated stress-arousal probability  
for this participant.

Our study has demonstrated that 
daily-life monitoring is technically 
feasible. However, the number of 
unpredictable stressors and activity 
contexts in daily life confirmed that 
several sensing modalities, estima-
tion algorithms, context informa-
tion, and questionnaire assessments 
must be combined to relate biosignal 
patterns and stress-arousal contexts 
in daily-life conditions. Nonethe-
less, using only two sensing modali-
ties and an improved context-aware 
AHR algorithm, we were able to 
quantify phase onset, duration, and 
intensity. Self-reported mood and 
daily activity in close proximity of 
detected phases let us relate the de-
tections to plausible stress-arousal 
contexts.

Our context-aware adaptation of 
the original AHR algorithm is a first 
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step toward considering diverse phys-
ical activity categories in relation to 
biosignal patterns, instead of naively 
omitting measurements affected by 
physical activity. This approach is es-
sential to clarify the extent to which 
type and intensity of physical activity  

actually inf luence stress-arousal 
monitoring. A stress-arousal assis-
tant can thus adapt to personal ac-
tivity characteristics related to stress 
arousal. In the future, we plan to de-
velop arousal models using our de-
tection approach and incorporate 

temporal as well as contextual infor-
mation of consecutive stress-arousal 
phases.

Lessons Learned
Although estimating stress arousal in 
the wild is an open technical challenge, 

Figure 5. Monitoring stress-arousal phases in daily-life conditions. (a) A schematic of the stress-arousal phase estimation, 
including the detection of activations, their filtering, and estimation of duration and intensity. (b) The wearable monitoring 
system and sensor placement for day-long recording: the heart rate monitor (HRM) chest belt, wireless acceleration sensors 
(BodyANT), and Q-belt integrated computer (QBIC). (c) The probability P(A|R) of being in an arousal A phase during a daily 
activity R based on the estimated stress-arousal phases. (Daily activities that were not recorded for a participant are marked  
with “x.”)
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our approaches revealed interesting op-
portunities for assistant systems. Our 
work showed how context-specific 
conditions with known stressors can 
help research take gradual steps to-
ward daily-life monitoring conditions. 
We considered the analysis of context-
specific short-term stress arousal as a 
suitable approach to relate physiologi-
cal responses to specific physical activi-
ties and stressful situations in natural 
environments. The analysis of accumu-
lated short-term stress arousal could 
contribute to understanding long-term 
stress arousal, such as work overload 
and burnout.

From our context-specific studies, 
we learned that heart rate features 
can be related to stress arousal, even 
in changing physical activity contexts 
and varying stressor types. Our work 
with ski jumpers showed that combin-
ing stress-arousal estimation based on 
heart rate with the athlete’s perception 
can help to determine and potentially 
even improve performance. Additional 
information related to stress arousal, 
such as self-reporting and perfor-
mance ratings, can be used to comple-
ment a wearable sensor-based assistant 
system.

However, wearable systems don’t 
need to be overly complex or combine 
many sensor modalities, especially if 
the measurement and stressor contexts 
are known. Similarly useful context-
specific monitoring systems could be 
realized for many other applications. 
This successful monitoring will even-
tually let researchers develop assistant 
systems for various situations. Assis-
tance could be provided by visualizing 
a history of stress-arousal events or by 
giving feedback before and during the 
stressful situation. For example, Pedro 
Sanches and his colleagues investigated 
different interface designs to visualize 
stress arousal.5 Such feedback could 
help in developing self-awareness for 
stress-arousal situations and personal 
coping styles.

In daily-life monitoring condi-
tions with unpredictable stressors,  

multimodal measurements that cap-
ture body motion and heart activity 
seem essential. In particular, we con-
clude that multimodal measurements 
can resolve ambiguities in biosignal  
patterns caused by parallel stress arousal 
and physical activity transitions. More-
over, context-related interpretations 
can help us interpret stress-arousal  
events.

T he promising results shown 
here warrant further re-
search. Based on these re-
sults, we intend to develop 

models that could describe stress 
arousal in daily life. Nevertheless, ex-
pertise from psychologists and other 
professionals is essential to realize 
and advance stress-arousal assistance  
technologies.
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