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Abstract—This paper presents a robust location-aware activity
recognition approach for establishing ambient intelligence ap-
plications in a smart home. With observations from a variety
of multimodal and unobtrusive wireless sensors seamlessly in-
tegrated into ambient-intelligence compliant objects (AICOs),
the approach infers a single resident’s interleaved activities by
utilizing a generalized and enhanced Bayesian Network fusion
engine with inputs from a set of the most informative features.
These features are collected by ranking their usefulness in esti-
mating activities of interest. Additionally, each feature reckons
its corresponding reliability to control its contribution in cases of
possible device failure, therefore making the system more tolerant
to inevitable device failure or interference commonly encoun-
tered in a wireless sensor network, and thus improving overall
robustness. This work is part of an interdisciplinary Attentive
Home pilot project with the goal of fulfilling real human needs by
utilizing context-aware attentive services. We have also created
a novel application called “Activity Map” to graphically display
ambient-intelligence-related contextual information gathered
from both humans and the environment in a more convenient and
user-accessible way. All experiments were conducted in an instru-
mented living lab and their results demonstrate the effectiveness
of the system.

Note to Practitioners—This system aims to achieve non-obtru-
sive and location-aware activity recognition, and the authors have
successfully prototyped several AICOs to naturally collect inter-
actions from residents or status from the environment. In addi-
tion, these AICOs have the potential to be commercialized in the
future due to practicability and near-term advances in embedded
systems. Furthermore, other potential advantages of an AICO lie
in its applicability to other domains beyond just the home environ-
ment. Our initial work has yielded high overall accuracy, therefore,
suggesting that it is a feasible approach that may lead to practical
ambient intelligent applications (such as the Activity Map in this
work). The limitations are that some currently available sensors
cannot measure specific desired observations, or, in some cases, re-
quire users to carry them to operate.

Index Terms—Location-aware activity recognition, attentive
home, ambient-intelligence compliant object (AICO), wireless
sensor network.
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I. INTRODUCTION

W IRELESS SENSOR NETWORK (WSN) techniques
exhibit a promising future for smart homes aiming to

fulfill the vision of ambient intelligence. To achieve the true
promise and potential of ambient intelligence in the smart
homes, resultant systems or designs should be responsive,
sensitive, interconnected, contextualized, transparent, and
intelligent [1]. The building blocks for such intelligent sys-
tems must be economical enough to manufacture, deploy and
maintain, thus making them widely acceptable to the public.
Recognizing high-level contexts (such as residents’ current
locations and ongoing activities) is one of the essential bases
for realization of abundant context-aware applications which
foster many innovative and attentive services, and recent ad-
vances in embedded systems make real-time high-level context
recognition from compact and pervasive devices possible.
Thus, we believe that compact and versatile devices have great
potential to retrieve the contexts and realize Weiser’s vision in
ubiquitous computing [2]. Here, he proposed the use of pro-
found technologies to investigate how information technology
can be widely diffused into everyday objects and how these
technologies can lead to creative ways of supporting people’s
everyday lives. However, to achieve such potential, several
practical issues [3] must be addressed when utilizing and
deploying these resource-constrained and interference-prone
devices in order to obtain long-term and reliable contexts in a
typical home environment.

Although vision- and audio-related technologies are com-
monly used in human tracking and activity recognition, they
are generally considered undesirable in a home environment
due to potential privacy-violation, which compromises the
desired transparency in a ubiquitous or pervasive environment
[4], [5]. To be more practical, sensors in a smart home must be
incapable of either directly identifying residents or capturing
privacy-sensitive information. These devices must be capable
of recognizing contexts of interest more naturally without
directly revealing or compromising privacy.

To address above-noted concerns and to fulfill the require-
ments of real human needs, a multiyear interdisciplinary
project, named “Attentive Home,” (kicked off in 2006) is
currently underway at National Taiwan University (NTU) with
the goal of designing a practical, human-centric, attentive
environment. Members of the project team comprise specialists
from a variety of fields, such as computer science, sociology,
electrical and civil engineering, psychology, mechanical engi-
neering, etc. Additionally, we have been leveraging a variety
of technologies to construct an open-standards-based platform
(OSGi [6]) in order to integrate mobile devices, wireless sensor

1545-5955/$26.00 © 2009 IEEE



LU AND FU: ROBUST LOCATION-AWARE ACTIVITY RECOGNITION USING WIRELESS SENSOR NETWORK IN AN ATTENTIVE HOME 599

networks, home robots and other state-of-the-art technologies.
Our “CoreLab,” a living lab at NTU, has been set up to develop
and test numerous feasible methodologies that might facilitate
deployment of practical ambient intelligence applications that
could soon be realized in the real world.

During the first-year of the project, we discovered that un-
obtrusive and location-aware activity recognition is one of the
key enablers for many practical scenarios in an attentive home.
This finding has motivated us to aim for taking advantage of
a minimum number of unobtrusive sensors to perform accurate
location-aware activity recognition without requiring occupants
to wear any sensor devices. This design provides a more accom-
modating, natural, and pleasant living experience for residents.

The task of accurate and reliable activity recognition is very
interesting and challenging due to a variety of factors. First, time
variance is highly unpredictable. For example, the time that a
resident spends watching TV could range from less than thirty
minutes to a couple of hours during weekdays, or, might even
stretch to four hours on weekends. Second, activity composition
varies in sequences and hierarchies. For instance, watching TV
might start with turning on the TV first via a remote control or it
might, instead, begin by pressing a button on the front panel. It is
likely then followed by flipping through different channels (via
the remote control or the buttons on the panel) or could simply
be followed by the resident sitting through an entire program.
At last, the activity could end with the resident switching off the
TV consciously or might, instead, end with the resident falling
asleep. Moreover, a complex activity often comprises many re-
lated sub-activities which residents might perform in arbitrary
order. Third, interleaved (or interrupted) activities are common
in our activities of daily living (ADL), and residents likely will
need to pause their ongoing activities and may or may not re-
sume them afterwards. Fourth, the system becomes much more
complicated when the task of accurate activity recognition in-
volves a multiresident environment. Finally, interference or un-
certainties from error-prone sensors pose additional challenges
to the task.

In this study, rather than considering all challenges for mul-
tiple residents, we focus primarily on detecting interleaved ac-
tivities and whereabouts for a single person based on reliable
features extracted from error-prone devices. The reliable fea-
tures also allow us to effectively tackle the challenges of both
time variance and activity composition under uncertainties.

II. RELATED WORK

Human activity recognition and tracking are among the
fundamental issues in an ambient intelligence environment,
and many recent studies have focused on solving these crucial
problems via a variety of sensors. Compared with much of
the vision-based activity recognition research using Bayesian
Network ([21]–[23]) or HMM (Hidden Markov Model [8],
[24]–[26]), less attention has been paid to wireless sensor
networks deployed in living labs [27]. Table I selectively lists
some related research using various sensors along with the
methods of their deployment to achieve the goal of accurate
activity recognition.

Tapia et al. [5], [16] have shown that raw data from simple
binary sensors along with a simple inference mechanism have

TABLE I
SUMMARY TABLE OF ACTIVITY RECOGNITION USING VARIOUS SENSORS

AND SENSOR DEPLOYMENT

solid potential for solving activity recognition problems in reg-
ular home settings; however, the stability of resultant accuracies
among various activities needs further improvement. We utilize
multimodal sensors to generate many informative features with
small intraclass variation to improve overall accuracy. To im-
prove overall robustness, we also calculate real-time reliability
factors to detect possible malfunction commonly encountered
in resource-constrained wireless devices.

Wilson et al. [28] have demonstrated that multiple residents’
current locations can assist with activity recognition and vice
versa; however, their work provides coarse-grained results
merely showing which rooms the residents are in (room-level)
and whether they are currently moving or not (binary motion
type). This has motivated us to establish location-aware activity
recognition for a single user and, simultaneously, to increase the
resulting granularity by providing more fine-grained outcomes.
We also propose a flexible architecture such that our current
work may easily be extended and applied to multiple resident
environments.

Lester et al. [29] have utilized a hybrid inference model to
demonstrate that multimodal wearable sensors can generate
useful features to unobtrusively distinguish activities; however,
residents must continuously wear sensors or detection devices,
which can be quite unwieldy and inconvenient ([30]–[32]),
particularly for the cognitively impaired elderly or in an en-
vironment targeting maximal comfort. Furthermore, annoying
issues caused by frequent and necessary battery replacement
will eventually deter residents from using such methods. Our
approach embeds sensors throughout the lab and does not
require residents to wear or carry sensors all the time.

As for interleaved/interrupted activity recognition, most pre-
vious works directly omitted this possibility in order to sub-
stantially decrease overall complexity. Philipose et al. [12] and
Patterson et al. [30] have taken advantage of radio frequency
identification (RFID) to detect such interleaved events by asso-
ciating a set of detected objects (attached with RFID tags) with
an activity. Nevertheless, wearing RFID gloves all the time to
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Fig. 1. Hierarchical system architecture for location-aware activity recognition
in an attentive home.

detect objects and requiring that all objects in the environment
be tagged is currently not feasible in our living space; more-
over, it is also contrary to our goal of designing a comfortable
and natural living environment. These considerations motivate
us to detect interleaved/interrupted activities by generating or
utilizing more informative features without requiring residents
to wear sensors all the time.

To achieve the above-noted improvements upon previous
works, the primary focus of this paper is on inferring a single
resident’s interleaved activities assisted by his or her location
context. This work also fuses informative features extracted
from multimodal wireless devices instrumented in a regular
home rather than on the residents, themselves.

III. THE PROPOSED APPROACH

A. System Overview

Fig. 1 illustrates the multiple-layered hierarchical architec-
ture for location-aware activity recognition in our attentive
home system. Starting from the lowest layer, instead of directly
using simple sensors [5], [33], we propose using ambient-in-
telligence compliant objects (AICOs) to collect interactions
from residents and status from the environment. The design
of an AICO follows both general ambient intelligence visions
and Weiser’s vision; that is, an AICO is a building block for
ambient intelligence applications and, meanwhile, facilitates
weaving profound technologies [34] into the fabric of everyday
life. As for implementation, an AICO is an ordinary household
object (or a virtual object) overlaid by a virtual layer, where
this additional virtual layer will capture interactions without
interfering with natural manipulation of the object from resi-
dents. The usefulness of an AICO also lies in its augmented
abilities to naturally capture the contexts or the interactions
such that they become reliable feature sources to the upper

layers and to actuate devices to stimulate more interactions via
interoperability among AICOs.

AICOs can generate various features based on the captured
data. We propose to divide the features into those which are ex-
plicit (in the time domain) and those which are implicit (in the
frequency or other domains) in order to explore them separately.
Since both activity and location features can work together in a
reciprocal way [28], AICOs currently focus on generating ex-
plicit features for estimating a resident’s activities, which will
be further improved by his or her location information. Since
highly discriminative features are more resistant to uncertain-
ties and insensitive to interference inherent in battery-powered
wireless devices, the system needs to concentrate on these useful
features to reduce the overall computational burden. Addition-
ally, the importance of more useful features is their potential for
facilitating the feasibility of recognizing more complicated ac-
tivities, especially in a multiple-resident environment.

After the extraction of various features, effective fusion of
them can generate more reliable estimates. Fusion of multiple-
source data has been proven effective in improving the accuracy
of an estimate and we adopt feature level fusion such that the
system is exempted from the responsibility of knowing the de-
tailed implementations of the various multimodal sensors. This
means the system can only concentrate on those features with
better usefulness after sorting. Additionally, another advantage
of feature-level fusion is that newly selected features (such as
residents’ IDs) can readily integrate into the system as long as
they can help with the distinguishing tasks of location-aware ac-
tivity recognition.

In order to deal with inferring activities under uncertainties,
probabilistic reasoning offers an effective way to deal with un-
predictable ambiguities from multiple sensors. Although [35]
and [36] have demonstrated that naive Bayes classifiers work
quite well in some domains with low variances of the classi-
fiers in lieu of their strict independence assumptions among fea-
tures and the classes, they did not consider overall efficiency and
robustness of the classifiers, especially in a cluttered environ-
ment using error prone devices. We have implemented multiple
naive Bayes classifiers, each of which represents an activity to
be recognized; furthermore, we enhanced each classifier by in-
corporating both ranking features and reliability factors to detect
interleaved activities and unexpected malfunction respectively.
Since these classifiers benefit from not enforcing mutual exclu-
sivity, they will not preclude the possibility of, for example, the
detection of studying while listening to music. The inferred ac-
tivities will be stored in a central ADL database as the source
for later development of ambient intelligence applications.

Given the contexts stored in the ADL database, the system can
represent real-time or historical activities in an innovative way.
Furthermore, ambient intelligence and ubiquitous computing
scenarios can be set up to demonstrate the usefulness of the tech-
nologies. How to effectively utilize the database and represent
the stored data, however, becomes a critical issue, because good
utilization of the information fosters the acceptance of technolo-
gies and provides helpful assistance to residents, caregivers or
other users. For example, Bonanni et al. [2] provided awareness
of water temperature by projecting a colored light, thus creating
an intuitive ambient interface without distracting the resident’s
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Fig. 2. Layered abstraction for an AICO. Functions enclosed in parentheses
indicate component’s characteristics for meeting the requirements of ambient
intelligence.

current attention. Finally, remote access of the system provides
information tailored to the capabilities of a client’s device types.

One of the major advantages of this hierarchical architecture
is its flexibility in replacing the mechanism on each layer when-
ever necessary. For instance, we can change the upper layer in-
ference engine to a conditional random field [37], if necessary,
to model undirected dependencies among features. In the future
we could, for example, alter the fusion methods while contin-
uing to use the sorted features generated from the AICOs on the
lower layer.

B. Data Collection for Location-Aware Activity Recognition

1) AICO Design and Implementation: Fig. 2 shows the ab-
straction of our AICO design that can foster location-aware ac-
tivity recognition. A wireless sensor node acts as part of the vir-
tual layer described in the previous section; the node can sense
changes from residents or the environment, and can also accept
remote control signals to activate actuators, if necessary.

A sensor data collection can be triggered through manipu-
lation of physical objects by residents (e.g., turning on a TV)
or by some virtual mediums (e.g., measuring distance from a
resident). Results from [33] show that residents may consider
their houses as “dirty” when visible sensors are installed. This
motivates us to establish an additional deployment layer and
adopt “seamlessly embedded” strategy while designing the vir-
tual layer in an AICO. Namely, we will try to seamlessly embed
sensors/actuators with objects and hide them as much as pos-
sible during the design phase in order to avoid distracting resi-
dents’ attention. This design can further ensure safety for chil-
dren and the elderly, or can avoid unexpected damage from cu-
rious guests. The sensor/actuator interface can be customized
by using a daughter board (with necessary interfaces like ADC,
UART, SPI, etc.) to fit the connected sensors/actuators, thus fur-
ther increasing overall flexibility.

The microcontroller can process raw data to extract higher
level features or contexts to increase overall efficiency. It
can also execute on-board self-diagnostic functions to reduce
maintenance costs. It is preferred that the power supply for
the virtual layer be derived from a stable source (e.g., using

USB power directly or any energy-harvesting technology that
can efficiently collect ambient sources of energy) to mitigate
concerns regarding power consumption or battery replacement;
however, the virtual layer can also be powered by batteries if
necessary. Additionally, AICOs can further be programmed to
cooperate with one another via various network topologies to
accomplish diverse tasks. The features or contexts of interest
will be transmitted wirelessly to a remote home/room server
for higher level processing.

The design of an AICO includes three objectives. First, an
AICO demands that the sensors/actuators should be seamlessly
or inconspicuously integrated with a regular object such that res-
idents can interact with the enhanced objects just as they did be-
fore. Second, smart home industries need more of a driving force
to promote human-centric technologies so that better attentive
applications can drive more demand. An AICO motivates em-
bedding computing power into regular objects (or appliances)
and can greatly increase their functionality and value in the
market. Third, an AICO stresses the significance of good design
in facilitating smart objects in a smart house application. From
our ongoing “Attentive Home” project at NTU, we have learned
that establishing a satisfactory attentive home goes beyond just
using advanced technologies. Stronger interdisciplinary coop-
eration can perfect a smart home that humans will really desire.
An AICO can be one of our first steps toward the goal of im-
plementing human-centric applications. More and more regular
and familiar objects will be retrofitted in our project in order to
obtain contexts of interest in a more natural, inconspicuous, and
elegant way.

2) Sensor Selection and Deployment for Activity Data Col-
lection: Currently, we have successfully integrated various sen-
sors with NTU “Taroko” wireless nodes [38] to generate in-
formative features without revealing privacy information. The
Taroko wireless node is a Tmote Sky [39] compatible wireless
super node with routing ability, and it can transfer the prepro-
cessed information wirelessly to a remote super node (also a
Taroko) plugged into an OSGi-based home/room server. As of
this point in time, we have successfully verified integration of
various commonly used analog sensors [40] with the Taroko
wireless nodes to detect current flow, voltage, pressure, vibra-
tion, motion, acceleration, distance, contact (via reed/mercury
switches) along with IDs (from passive RFID tags attached on
objects).

Utilizing domain knowledge, sensors/actuators in an AICO
are selected and installed so that they can be triggered whenever
activities of interest are performed. For electric-appliance-re-
lated activities, we have prototyped the virtual layer of a new
mobile AICO for power monitoring/control (referred to from
this point on as a “power-AICO”), as shown in Fig. 3. This de-
vice consists of a power socket and an outlet which can be used
in a series connection with a regular appliance to measure power
usage. In other words, the physical object that a power-AICO
enhances refers to any regular electric appliance. We can instru-
ment the power-AICO on the back/bottom of an appliance (such
as a TV or a microwave) so that the connected appliance will
also play a role as the deployment layer of the power-AICO.
Furthermore, this power-AICO obtains its own power directly
from a bundled regulator. With the integration of a passive RFID
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Fig. 3. The prototype of a power-AICO for monitoring power usage. It can
be used in a series connection with any electric appliance (right) and a power
source (left).

reader, an appliance with an attached passive RFID tag can con-
nect to the power-AICO so that any appliance-related activities
that commonly occur in our ADL can successfully be recog-
nized. We will soon add a relay to this device to enable remote
control via a mobile device.

Therefore, the wireless node along with the sensors inside the
power-AICO can enhance the functionality of a regular appli-
ance, allowing it to become a building block for ambient intelli-
gence applications, just like the “music bottles” demonstrated
in [34]. Moreover, the residents will not notice the existence
of a power-AICO; it will collect useful information silently (or
transparently) without interfering with users’ interactions or dis-
tracting their attention.

3) Indoor Human Location Data Acquisition: Since piezo-
electric straps or pads can detect exerted pressure on the floor
and can easily be located out of sight, they become good can-
didate sensors to embed in an AICO for human location de-
tection. We have also prototyped a smart floor block (called a
“floor-AICO”) to detect residents’ current locations for assisting
activity recognition. Our system currently obtains high-level lo-
cation information (e.g., in the living room or on a chair) by
searching the IDs of a floor-AICO in a lookup table. In pro-
totyping this AICO, we aim to design a cost-effective, accu-
rate sensor device that is not only easy to deploy, but which
can also be readily replaced after any malfunction; moreover,
a floor-AICO can also lay the groundwork for later integration
with other AICOs to provide location-aware services.

Fig. 4 depicts a floor-AICO containing one piezoelectric pad
installed on the center of a mat with dimensions of approxi-
mately 30 30 cm . The output voltage of the pad is roughly
proportional to the input force exerted on the sensor and is con-
verted to digital readings by an ADC bundled in the microcon-
troller on a Taroko.

The advantage of implementing floor-AICOs is threefold:
1) These blocks are easy and flexible to deploy. 2) Their
accuracy and cost can be determined by the size of each mat
as well as the total cost considerations of the floor. One could
even deploy some dummy blocks, which have no sensors or
wireless sensor nodes, under furniture or appliances; or, one
could place floor-AICOs only in areas of interest like [7] to save
further expense. 3) These floor-AICOs make various interactive
or interoperable scenarios feasible. For example, the attentive

Fig. 4. A prototype of a floor-AICO (30� 30 cm ) and image of its inside.

home can automatically close the curtain if someone is studying
beside a window and the sunlight is too strong (which could be
detected by another AICO with an optical sensor).

Fig. 5 shows an overview of our instrumented CoreLab pop-
ulated with a variety of wireless multimodal sensors to collect
data for various ADLs during experiments. In actual deploy-
ment situations, we would only utilize those sensors considered
helpful or essential after evaluating their usefulness in distin-
guishing activities of interest.

C. Invariant Feature Evaluation, Sorting, Selection, and
Composition

Invariant features extracted from sensors are often commonly
used in vision-based activity recognition (e.g., SIFT [41]). How-
ever, it is very challenging to generate invariant and highly dis-
criminative features for effectively distinguishing human activ-
ities due to the time variance and the activity composition for
different residents. This motivates us to establish an efficient
mechanism to retrieve invariant features and evaluate their use-
fulness. As for extracting invariant features, good sensor selec-
tion is the most critical procedure to begin with. Since we will
deploy only those sensors that are truly useful to detect the ac-
tivities of interest, domain knowledge is necessary for sensor
selection from the outset.

We have divided extracted features from multimodal sensors
into explicit and implicit categories based on their requirements
in computing resources. Explicit features are those demanding
less computing power (such as mean, variance, area under
curve, maximum, and minimum) and they are more intuitive
to interpret in the time domain. By contrast, implicit features
(e.g., fast Fourier transform (FFT) as listed in [42]) are more
computation-demanding, nonintuitive and need in-depth un-
derstanding for system designers. Our goal is to generate all
potentially useful features directly from AICOs; however,
current processing power on an embedded processor is not
sufficient to enumerate all useful features. Besides, we cannot
completely rely on computers to automatically select sensors
without help from domain knowledge.

Explicit features can assist humans more intuitively to select
necessary sensors. This is why we are currently focusing on ex-
ploring explicit features and evaluating their usefulness. Explo-
ration and evaluation of latent and useful implicit features will
be performed in the next phase of our “Attentive Home” project.
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Fig. 5. Deployment overview in the CoreLab at NTU for experiment data collection. Each room has its own room server to serve as a data processing center. Note
that the four cameras are only meant for collecting ground-truth for labeling the training data.

Fig. 6. An illustration of an activity and its simplified (or binarized) corre-
sponding features in the time domain.

At that point, we will discuss how to make good use of both
types of features to increase the overall recognition rate.

1) Time Invariant Feature Extraction and Evaluation: Fig. 6
illustrates various types of simplified (or binarized) explicit fea-
tures in the time domain (each feature can be treated as an en-
ergy function). However, the actual explicit features are analog
and probably biased. It is very challenging to generate an ideal
feature as in Fig. 6(b), which exactly matches the duration of
the original ground truth (GT) in Fig. 6(a), let alone a predictive
one [Fig. 6(c), [43]]. More realistic features look like Fig. 6(d)
with delayed detections of the activity. Fig. 6(e) and (f) illus-
trate some features that are very common in our ADLs. For ex-
ample, the features from a mercury switch attached to a remote
control to detect “watching TV” would resemble Fig. 6(f), since
residents tend to flip through channels from time to time in an
unpredictable manner.

All training samples consist of raw data and can be
processed to obtain possible useful features

with a total of activities of interest from
. Given a feature , we propose

two major properties to evaluate the usefulness in the time

domain and decide a cutoff point as in [29] to eliminate less
useful features.

The first property is the time invariance that is a charac-
teristic indicating how a feature can adapt itself to completely
fit the time duration to its corresponding GT in the time domain.

is evaluated by cross correlation between the GT and a can-
didate feature for an activity. The cross correlation originally
refers to the measurement of similarity between two signals in
the signal-processing domain by comparing an unknown signal
to a known one. The higher the value, the closer a candidate
feature to its corresponding GT. can be evaluated by (1)

(1)

where is the relative time invariance for feature based on
the GT of activity . is the GT function for activity (whose
duration is ) and is the unknown normalized feature (or a
candidate feature function) to be evaluated. is the maximum
cross-correlation value from the training data as a factor for nor-
malization.

The second factor is the detection sensitivity which eval-
uates how small the early activity-start detection time and
early activity-end detection time can be (as in Fig. 6(d))
as shown in (2). We only evaluate the first and the last
within the duration of their corresponding GT for simplification

(2)

where is the weight. is approximated with a weighted
sum of two Gaussian distributions for and with
their corresponding variances ; theoretically, both and

will be very close to zero for a time invariant feature. Addi-
tionally, the higher the , the more sensitive a candidate fea-
ture is for perceiving the beginning and the end of an activity.
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2) Feature Sorting and Selection: Finally, we calculate a
weighted sum to determine a feature’s usefulness as follows:

(3)

where there are confidence parameters to be evaluated
for each feature with their corresponding weights (and

). In the current phase, there are only two confi-
dence parameters consisting of and as defined in (1)
and (2). To sum it all up, the larger the time invariance
and the detection sensitivity are, the more useful the fea-
ture is for recognizing activity .

Instead of utilizing all possible features for an activity , we
are more interested in finding a ranking of feature sets

based on their usefulness.
This way we can minimize recognition errors while also mit-
igating the computational load for the system. That is, those
features after ( is the cutoff point for activity ) will
not provide further improvement for the accuracy during the
training phase.

3) Feature Composition: In order to increase the number of
time invariant features and enhance overall robustness, we not
only measure the similarity between a candidate feature and its
GT, but also define two further properties to evaluate the rela-
tionship among candidate features.

The first property is the backup (or redundancy) ability to
measure the similarity between two candidate features. The
backup property for a feature can also be reckoned using a
similar convolution equation as (1), with the difference being
the GT function is replaced by another feature function. The
backup property states the ability of a feature to back up another,
and it is a useful property for improving overall robustness.

The second property is the orthogonal ability to estimate how
a feature can compensate another one. The orthogonal property

is inspired by the idea of orthogonal base vectors in linear
algebra and its evaluation makes use of an inner product calcu-
lation between two feature vectors in the time domain, as shown
in (4)

(4)

where [ ] and [ ] are the values for feature and at
time and their GT is activity (whose duration is ). The
higher the is, the less orthogonal these two features become.

It is very challenging to obtain time invariant features simply
from one single sensor, and thus, composite features become de-
sirable. Since an AICO is not restricted to using only one sensor,
we can connect multiple sensors with appropriate characteris-
tics to obtain composite features if necessary. The system can
systematically select useful features with proper orthogonal and

Fig. 7. Multiple enhanced naive Bayesian models for performing data fusion
and inferring interleaved activities for a single resident.

backup properties to generate more time invariant features. Ad-
ditionally, a composite feature can reckon its usefulness as in
(1) and (2) to evaluate its contribution to the outcome.

By taking appropriate advantage of the properties stated
above, we can overcome some critical challenges inherent in
activity recognition problems. With time invariant features, we
can detect if a feature occurs in a specific period as in [5] to
help recognize the activities of interest. As for implicit features,
we plan to make use of a similar mechanism as described in
[29] to obtain more accurate classification results in future
experiments.

D. Feature Fusion and Location-Aware Activity Inference

To effectively make full use of ranking features, a generalized
fusion and inference engine for various activities is desirable.
Furthermore, in order to increase performance and take into ac-
count uncertainties inherent in wireless sensors, we enhance a
naive Bayes classifier by incorporating reliability factors to de-
tect potential malfunction so that the system can exclude mal-
functioning nodes from continuing to contribute erroneous in-
formation, thus increasing overall robustness.

Fig. 7 shows our proposed multiple enhanced Bayesian
models for performing feature fusion and activity inference by
incorporating ranking features as well as their corresponding
reliability factors given the observations from a variety of
multimodal sensors. For an activity , the nodes include
(the th ranking feature), (its location-aware feature), and
their corresponding reliability factors ( and ) given the
current observation vector . According to Bayesian Network
theory, the joint probability of interest can be factorized based
on the network structure and then expressed by the following
equation:

(5)

where is the conditional probability of querying
nodes given observations is the parent set of a
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certain node . Based on the Bayesian Network of Fig. 7, its
joint probability of interest can be factorized into (6)

(6)

where is a dynamically adjustable value for normalization
based on currently selected features. , is the
marginal joint probability of interest regarding the unobservable

given reliability factors ( and ) and evidence vector
. denotes the vector composed of the reliability factors

from to . and represent the like-
lihood that may occur given the feature and . For now,
the prior probabilities for all activities are assumed equal.

and are reliability factors and can be used to control
the contribution of one single feature by using the likelihood

and ; and are de-
termined by sensor models, both of which are closely related
to whether some specific sensors are triggered to generate cor-
responding features given the current observations. Obviously,
these models with ranking features are more concise than the
ones using all possible features, thus greatly reducing the com-
putational burden. Note that we omit all of the time variables in
all equations to simplify the expressions.

In order to estimate , each of the individual probabilities
in (6) need definitions based on the instrumented environment
and required accuracy and robustness. Equation (6) enables us to
use a “divide and conquer” approach to estimate more
efficiently. Take as an example; different system
designers could define it based on their concerns about system
robustness such that the resultant system is adaptive to distinct
sensors in their instrumented houses.

In order to generalize the definition of reliability factors for
, we adopt a similar approach used in [44], which

is dedicated to audio and video sensors, to be applicable for
multimodal wireless sensors. The reliability is evaluated based
on two common elements, which are not only applicable to our
settings. The first element is the natural patterns or the spatio-
temporal smoothness when residents perform activities. That is,
we utilize recurrent window approach where recent activities
will be helpful in predicting the current one. The second element
is the persistent tendency of a malfunction to keep contributing
erroneous output to the data fusion mechanism even if the output
is unstable.

According to the above considerations, the reliability
used to improve the smoothness and performance at time can
be defined as

(7)

where is the weight and is the total number of de-
tections of the activity during the interval ranging from time

to time . is the window width of the detecting in-
terval. We have discovered from some pilot tests that the number
of correctly received packets is closely related to the stability of
a remote sensor, and is the total number of packets (with
the frequency as a normalizing constant) correctly re-
ceived for feature within the interval looking back from
time . Now, we define using a sigmoid function as

(8)

where is a constant to control the slope of the sigmoid func-
tion and and are predefined constants. Likewise, we can
define using the concepts as depicted in (7) and (8).

As for , we define it as

(9)

where is the feature representing the current location and
contains the activity zones consisting of the IDs of floor-AICOs
for . We model with a Gaussian function with the
Euclidean distance between and a floor-AICO within

as its argument and with as its variance. The location
feature incorporates high-level contextual information or do-
main knowledge about the AICOs in which the sensors are em-
bedded (e.g., on the door of a microwave in the kitchen).

To estimate and speed up the computation, this work an-
alytically updates and in (6)
and then marginalizes all unobservable nodes. Finally, the pos-
sible ongoing activities can be derived by

(10)

where is a threshold to control the how many activities can
be detected at the same time. Note that can serve as a compo-
nent of a more complicated activity for future enhance-
ment, as shown in Fig. 7

IV. EXPERIMENT

To validate our approach, we have collected training data
about activities of interest that commonly occur in a regular
home, as listed in Table II. Some of these activities are even in-
terleaved. The dataset was collected across multiple days in the
CoreLab, as shown in Fig. 5, from 11 volunteers (ten of whom
are not researchers). The volunteers were asked to read the brief
instructions in Table II as rough guidance. On average, we have
collected varying lengths of data per activity and we have used
four cameras deployed on the four corners of the Corelab to col-
lect ground truth for labeling training data afterwards.

The average accuracies (percentage of time that an activity
is correctly detected) of the experimental results are shown in
Table II, where the comparison between the results with/without
the assistance of location context is presented to verify the use-
fulness of location-awareness. The results with location infor-
mation outperform the others without location assistance; this
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TABLE II
EXPERIMENTAL RESULTS FOR LOCATION-AWARE ACTIVITY RECOGNITION (ELEVEN VOLUNTEERS)

Fig. 8. (a) Continuous recognition result of interleaved activities for using PC and phone. (b) Continuous recognition result of interleaved activities for studying
and listening to the music. (c) The simulation of an erroneous feature � and using reliability to control its contribution. (d) Comparison with/without location-aware
assistance for “watching TV” activity.

is especially obvious in the testing scenario of “watching TV”
and “studying” because volunteers were asked to take some bev-
erages. Table II also lists the ranking of sensors that can gen-
erate the most useful features. The majority of the useful fea-
tures stem from sensors (embedded in AICOs) to detect power
usage, contact, pressure, location, and motion. In particular, the
power-AICOs are very helpful in distinguishing activities that
involve any home appliances such as “watching TV,” “listening
to the music,” “using microwave,” and “using other appliances
with RFIDs.”

Fig. 8(a) illustrates the result of a continuous testing trace
and demonstrates the recognition results of two interleaved
(and partially concurrent) activities between “using PC” and
“using phone.” The majority of the data traces were correctly
classified by the model, but there were some sparse misclas-
sifications owing to the less informative features from “using
phone.” Fig. 8(b) shows satisfactory recognition results of two
interleaved activities between “studying” and “listening to the

music” since their ranking features are very reliable and well
selected.

In order to simulate sensor malfunction, we conducted two
tests to purposely weaken the most informative feature during
the experiment given that the second useful feature is almost
as helpful as the first one. Fig. 8(c) shows the Bayesian Net-
work fused results with/without the help from reliability fac-
tors. In the case of a device failure (test-1 for battery removal
simulation or test-2 for a more realistic simulation where the
number of successfully transmitted packets with correct read-
ings was programmed to decrease on purpose) and without any
assistance from the reliability factors, the final fused result be-
came less accurate. However, the simulated results show that
the reliability factors can automatically keep the engine away
from fusing the failed sensor, thus making the overall system
less sensitive to device failure and resulting in improved overall
robustness. Fig. 8(d) illustrates the comparisons with/without
location contextual information for a continuous testing trace.
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The addition of location context to the model helps to reduce
the classification errors in detecting “watching TV” activity be-
cause the volunteers were asked to leave to drink water or take
beverages in the middle of the activity. The results shown in
Fig. 8 confirm that the model using a Bayesian Network along
with the assistance from both reliability factors and location in-
formation improves the overall accuracy and robustness.

The experimental results show that composite features do not
further improve the accuracy for those activities with very in-
formative ranking features. For instance, the power-AICO can
generate very reliable time invariant features for detecting ap-
pliance usage. However, composite features do help increase
overall robustness as long as we choose at least one feature
with good backup property. In addition, the experimental re-
sults demonstrate that composite features become useful espe-
cially for those activities incapable of extracting reliable time
invariant features. For example, an activity such as “making hot
tea” involves touching different objects, and the accuracy is im-
proved by at least 20% when incorporating composite features.
That motivates us to explore further composite features in future
experiments.

V. DISCUSSION

The reason why the accuracy for “using phone” is lower than
expectations is that the volunteers sometimes prefer to use the
speakerphone rather than the handset, which, we thought, was
crucial for the sensors to detect this activity. This unexpected
behavior became even more frequent when the volunteers tried
to dial out only. That means our current settings for “using
phone” should likely be improved by utilizing other sensors
(such as current flow sensors) to detect this initially unexpected
event of using the speakerphone. Another lower-than-expected
recognition accuracy was observed in “using other appliances
with RFIDs”; this was partly because our current passive RFID
reader sometimes failed to detect the tag attached on the plug
of an appliance and volunteers did not get informed if such an
event happened.

The importance of location-awareness lies in its abilities to
correct the activity estimates which are tightly related to the
places where the activities are performed. For example, resi-
dents may leave the living room while watching TV, and come
back later with a glass of drink. Without location information,
the system may not detect this situation, and “watching TV”
will be considered persistent over the entire period of “taking a
drink.” We deployed more sensors to analyze which sensors are
crucial for an activity; namely, the actual number of sensors de-
ployed for later usage is often less than the total amount during
evaluation. The top three sensors indicated in Table II are meant
for this purpose.

One additional observation worth mentioning here is related
to interference problems encountered during the experiments.
Currently, other wireless signals (probably WiFi) appear to
cause some interference from time to time; this caused a de-
crease in the number of successfully received packets after we
switched and tested different channels. However, we found that
by preferentially choosing either channels 25 or 26, the results
improved, since both of these channels do not overlap with
WiFi channels.

Fig. 9. An activity map for a user in the Attentive Home. The bigger the font
size in the map, the more frequent the activity performed in that particular lo-
cation.

As for interference caused by various other factors (such as
different home layout, radio uncertainties or irregularity), we
adopted a strategy of simple retransmission of packets because
our applications also have the characteristics listed in [3].
These characteristics include low sampling rate, single-hop star
topology, unidirectional data flow, tolerable propagation delays,
and allowable sporadic packet loss. In addition to randomly
delayed retransmission, we utilized a double sampling rate
followed by event-driven transmission to ensure satisfactory
reception probability of wireless packets.

From questionnaires filled out after the experiments, we
found that more than two-thirds of the volunteers had concerns
regarding electromagnetic waves generated by wireless nodes.
The strategy of event-driven retransmission adopted in this
work enables a significant decrease in the amount of wireless
transmissions, thus reducing overall exposure to electromag-
netic waves and mitigating users’ concerns. These concerns do,
however, raise the possibility of other interesting research in
the future about potential long-term health effects that WSNs
might cause.

VI. APPLICATIONS

Pervasive sensors and actuators in an attentive home can
facilitate a multitude of applications ranging from activity
recognition, automatic service-provision, energy minimization,
health care, to tutors for household tasks (e.g., an LCD to
display cooking instructions on a recipe). In particular, they
can assist the elderly, thus alleviating some of the burden on
their families or caregivers. By understanding more about the
activities and significant locations of the residents, our proto-
type system can better match the expectations of residents in an
attentive home. Our experimental results suggest that a number
of context-aware applications may soon not only be feasible,
but may also, in fact, be quite practical. A feasible wireless
sensor network can report up-to-the-minute human/environ-
mental status and provide residents with various summarized
information in a more comprehensive and intuitive way.

Fig. 9 illustrates our first version of an “Activity Map”
showing activity information inferred from the data of a volun-
teer. This map utilizes a similar concept to “tag clouds” which
are often used for visualizing the popularity of topics in a
website. The bigger the font size in the map, the more frequent
the activity performed in that particular location. Please refer
to [45] for more information.



608 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

VII. CONCLUSION AND FUTURE WORK

This paper presented a location-aware activity recognition ap-
proach utilizing a Bayesian-Network-based fusion engine with
inputs from ranking features using assistance from reliability
factors reckoned from a variety of wireless sensors to improve
overall robustness and performance. This work built on multi-
modal sensors to collect the most informative features to meet
the challenges of recognizing the multifaceted nature of human
activities. Our initial work, verified by experiments, has yielded
high recognition rates, thus suggesting that this is a feasible ap-
proach that may lead to practical ambient intelligence applica-
tions such as our first version of the activity map.

Our contribution here is threefold. First, instead of using
various simple or dumb sensors directly, we have prototyped
AICOs based on proposed design guidelines to facilitate natural
interactions with residents. Additionally, the AICOs integrated
with our flexible architecture are deployed throughout a living
lab rather than directly on the residents, themselves. Second,
in order to maximally take advantage of a minimum number
of sensors to perform accurate activity recognition, we aim
for generating as many time invariant features as possible and
evaluate their usefulness for creating a set of ranked distin-
guishable features. Additionally, feature evaluation, selection,
and composition mechanisms can improve overall system
performance and robustness. Third, in order to recognize in-
terleaved activities, in the current phase of our work, we have
chosen to utilize multiple naive Bayes classifiers and enhanced
them by systematically incorporating reliability factors, which
serve as confidences to control the contributions from possibly
error-prone wireless sensors. Additionally, the results of the
location-aware activity recognition are statistically displayed
on an activity map in a more pleasant and intuitive way.

The proposed approach has the potential of achieving the
goal of implementing a responsive, sensitive, interconnected,
contextualized, transparent, and intelligent system that can
move from our living lab into the real world. To meet more
real human needs and bear with more real-time contextual
information in the attentive home, our future work will aim
for recognizing multiple residents’ concurrent activities by
exploring more WSN technologies, extracting more invariant
features, and incorporating more complex models (such as
HHMM [46] or AHMM [24]) if necessary.
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