Professor Associado, Universidade Fernando Pessoa
Outras vias metabólicas: | |||
Química Orgânica: |
Existem duas formas principais de manter os níveis de glucose no sangue entre as refeições: a degradação do glicogénio e a gluconeogénese. A Gluconeogénese consiste na síntese de glucose a partir de outros compostos orgânicos (piruvato, succinato, lactato, oxaloacetato, etc.). O processo é bastante semelhante ao inverso da glicólise. De facto, quase todas as reacções da glicólise são reversíveis em situações fisiológicas. As três excepções são as reacções catalizadas por:
Na gluconeogénese, cada um destes passos é substituído por reacções termodinamicamente favoráveis. Desses três passos, a síntese do fosfoenolpiruvato a partir do piruvato é o mais exigente em termos energéticos, por ter um DG bastante positivo. Para ultrapassar esta barreira termodinâmica, esta reacção vais ser acoplada a uma descarboxilação, uma estratégia usada frequentemente pela célula para empurrar um equilíbrio no sentido da formação de produtos, como se verá em várias reacções do ciclo de Krebs. Como quer o piruvato quer o fosfoenolpiruvato (PEP) são compostos com três carbonos, isto implica uma carboxilação prévia, cuja energia provém da hidrólise do ATP. A descarboxilação do oxaloacetato assim formado produz a energia necessária para a fosforilação do carbono 2 pelo GTP, dando origem ao fosfoenolpiruvato (numa reacção catalizada pela fosfoenolpiruvato carboxicinase - PEPCK).
A enzima responsável pela carboxilação do piruvato (a piruvato carboxilase) existe na matriz mitocondrial, e contém biotina. O oxaloacetato (OAA) formado nesta reacção é incapaz de atravessar a membrana da mitocôndria. Pode sair da mitocôndria apenas depois de transformado em malato ou aspartato. A escolha do processo depende da disponibilidade de NADH (necessário para a gluconeogénese) no citoplasma. Se houver NADH suficiente no citoplasma (p.ex. se se estiver a realizar gluconeogénese a partir do lactato) o oxaloacetato é transaminado a aspartato. Caso contrário, o OAA é reduzido a malato, que sai da mitocôndria para o citoplasma, onde é novamente oxidado a OAA com produção simultânea de NADH. O OAA é então descarboxilado a PEP pela PEPCK citoplasmática. Em humanos, existe também uma PEPCK mitocondrial.
As reacções catalizadas pela fosfofrutocinase e pela hexocinase são substituídas na gluconeogénese por reacções hidrolíticas. Neste ponto, em vez de fosforilar ADP a ATP (o inverso da glicólise, mas desfavorecido termodinamicamente em condições fisiológicas), ocorre a libertação do fosfato por hidrólise:
A frutose 1,6-bisfosfatase existe em quase todos os tecidos, mas a glucose-6-fosfatase existe apenas no fígado e no rim, o que lhes permite fornecer glucose ao resto do organismo:
Durante o exercício físico intenso, o lactato produzido nos músculos é enviado para a corrente sanguínea, e pode ser utilizado pelo fígado para sintetizar novas moléculas de glucose. Apesar de se gastarem no fígado 6 ATP por cada molécula de glucose assim sintetizada, e de estas apenas gerarem 2 ATP no músculo em condições anaeróbicas, o processo é vantajoso pois permite a manutenção do exercício (o que pode ser determinante para a sobrevivência do indivíduo, p. ex. permitindo escapar a um predador, ou a continuação da perseguição a uma presa).
Biochemistry,
by Donald Voet & Judith Voet Um excelente livro. Expõe a Bioquímica com referências constantes à química orgânica e à lógica bioquímica. A inspiração destas páginas.... Particularmente indicado a estudantes de Licenciaturas em Bioquímica, Ciências Farmacêuticas ou Química. |
Biochemistry,
Stryer Um texto clássico, frequentemente actualizado e re-editado. |
||
Textbook
of Biochemistry with Clinical Correlations, Thomas Devlin Aconselhado a estudantes de licenciaturas em Medicina, Enfermagem, etc. Imensos exemplos da aplicação da bioquímica a casos clínicos |
Principles
of Biochemistry, Lehninger Um texto clássico, frequentemente actualizado e re-editado. |