Professor Associado, Universidade Fernando Pessoa
Chama-se metabolismo ao conjunto de reacções químicas que ocorrem nas células, e que lhe permitem manter-se viva, crescer e dividir-se. Classicamente, divide-se o metabolismo em:
Existe uma grande variedade de vias metabólicas. Em humanos, as vias metabólicas mais importantes são:
Clique na imagem para obter informação sobre cada via
As diversas vias metabólicas relacionam-se entre si de forma complexa, de forma a permitir uma regulação adequada. Este relacionamento envolve a regulação enzimática de cada uma das vias, o perfil metabólico característico de cada órgão e controlo hormonal.
O fluxo metabólico através da glicólise é regulado em três pontos:
O fluxo é regulado nas reacções características da gluconeogénese. Assim a piruvato carboxilase é activada por acetil-CoA, que sinaliza a abundância de intermediários do ciclo de Krebs, i.e., diminuição da necessidade de glucose.
O ciclo de Krebs é controlado fundamentalmente pela disponibilidade de substratos, inibição pelos produtos e por outros intermediários do ciclo.
A actividade da carbamoil-fosfato sintetase é estimulada por N-acetilglutamato, que assinala a abundância de azoto no organismo.
O fígado possui uma hexocinase com pouca afinidade para a glucose e que não é inibida por glucose-6-P. Portanto, a glucose só é fosforilada no fígado quando existe no sangue em concentrações muito elevadas (i.e. depois das refeições). Assim, quando a concentração de glucose no sangue é baixa o fígado não compete com os outros tecidos, e quando os níveis de glucose são elevados o excesso de glucose é convertido pelo fígado em glicogénio.
A entrada dos acil-CoA na mitocôndria é um factor crucial na regulação. O malonil-CoA, que se encontra presente no citoplasma em grande quantidade em situações de abundância de combustíveis metabólicos, inibe a carnitina aciltransferase impedindo que os acil-CoA entrem na mitocôndria para serem degradados. Além disso a 3-hidroxiacil-CoA desidrogenase é inibida por NADH e a tiolase é inibida por acetil-CoA, o que diminui a degradação de ácidos gordos quando a célula tem energia em abundância.
O fluxo metabólico na via das pentoses-fosfato é determinado pela velocidade da reacção da glucose-6-fosfato-desidrogenase, que é controlada pela disponibilidade de NADP+.
Utiliza normalmente apenas glucose como fonte de energia. Armazena muito pouco glicogénio, pelo que necessita de um fornecimento constante de glucose. Em jejuns prolongados, adapta-se à utilização de corpos cetónicos. É sempre incapaz de utilizar ácidos gordos.
Uma das suas principais funções é manter o nível de glucose no sangue, através da gluconeogénese e da síntese e degradação do glicogénio. Realiza a síntese de corpos cetónicos em situações de abundância de acetil-CoA. Responsável pela síntese da ureia.
Sintetiza ácidos gordos e armazena-os sob a forma de triacilgliceróis. Por acção do glucagon, hidroliza triacilgliceróis em glicerol e ácidos gordos, que liberta para a corrente sanguínea em lipoproteínas.
Utiliza glucose, ácidos gordos, corpos cetónicos e aminoácidos como fonte de energia. Possui uma reserva de creatina fosfatada, um composto capaz de fosforilar ADP em ATP e assim produzir energia sem gasto de glucose. A quantidade de creatina presente no músculo é suficiente para cerca de 3-4 s de actividade. Após este período, realiza a glicólise, primeiro em condições anaeróbicas (por ser bastante mais rápida do que o ciclo de Krebs) e posteriormente (quando o aumento da acidez do meio diminui a actividade da fosfofrutocinase e o ritmo da glicólise) em condições aeróbicas.
Pode realizar a gluconeogénese e libertar glucose para a corrente sanguínea. Responsável pela excreção de electrólitos, ureia, etc. A síntese de ureia, que ocorre no fígado, usa HCO3-, o que contribui para a descida do pH sanguíneo. Situações de acidose metabólica poderão portanto ser agravadas pela acção do ciclo da ureia. Nestas circunstâncias, o azoto é eliminado pela acção conjunta do fígado e do rim: o excesso de azoto é primeiro incorporado em glutamina pela glutamina sintase. A glutaminase renal cliva então a glutamina em glutamato e NH3, que excreta imediatamente. Este processo permite a excreção de azoto sem eliminar o anião bicarbonato.
Biochemistry,
by Donald Voet & Judith Voet Um excelente livro. Expõe a Bioquímica com referências constantes à química orgânica e à lógica bioquímica. A inspiração destas páginas.... Particularmente indicado a estudantes de Licenciaturas em Bioquímica, Ciências Farmacêuticas ou Química. |
Biochemistry,
Stryer Um texto clássico, frequentemente actualizado e re-editado. |
||
Textbook
of Biochemistry with Clinical Correlations, Thomas Devlin Aconselhado a estudantes de licenciaturas em Medicina, Enfermagem, etc. Imensos exemplos da aplicação da bioquímica a casos clínicos |
Principles
of Biochemistry, Lehninger Um texto clássico, frequentemente actualizado e re-editado. |